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1. INTRODUCTION

This report summarizes a three year effort under AFOSR contract
to elucidate plausible velocity coupling mechanisms in solid
propellant rocket instability.

"Velocity coupling" is a rather general term, which would tend to
encompass all phenomena not included in pressure-coupled
instability; in practice, the majority of instability phenomena
in solid propellant rocket motors seem to resist explanation by
pure pressure-coupled instability. In most general terms,
pressure is a state variable, and the response of the propellant
combustion to pressure perturbations could be explained without
detailed account of the associated fluid dynamic processes within
the motor -- provided the gaseous combustion region were
sufficiently thin to be conceived as quasi-steady (in the sense
of responding "instantaneously" to any pressure perturbation).
This leaves the thermal wave relaxation within the condensed
phase as the only possible mechanism for dynamic coupling with an
external acxoustic field, considering a Rayleigh instability
mechanism. This is in general insuffucient. Fluid dynamic
phenomena must be incorporated to account for other instability
mechamisms. This means, in particular that the instability
characteristics of a given propellant/motor configuration can not
be conceived globally, based on the propellant properties alone:
one must take into account the particular internal flow field, or
fluid-dynamic variables. This complicates the task of
instability calculation considerably, for obvious reasons.

After the effect of pressure perturbation has been separated,
what seems to remain is the (external, tangential) velocity
effect; hence the name for the instability coupling mechanism.
In practice, this may involve turbulence-combustion interaction,
residual exothermicity (slow kinetics) coupling, visco-acoustic
coupling, vortex-boundary interaction, or other diverse
phenomena, all having to do with instability mechanisms coupled
with the fluid dynamics of the internal flow.

The phenomena under consideration are also characteristically
nonlinear, in the sense that the response depends upon the
perturbation amplitude, and efficient coupling (and energy
exchange) exists between different frequency components (in
particular, high~frequencies influencing low-frequency behavior).
This accounts for the considerable complication in the analysis,
and renders limited utility to quasi-linearized calculations.

Against this general background, the present investigation has
engaged in the following three major tasks, undertaken during a
period of three years: (1) a critical literature evaluation
regarding mechanisms of velocity-coupled instability, (2) a
detailed order of magnitude evaluation of the various mechanisms,
and (3) a detailed numerical analysis of the most prominent
mechanism.
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The major accomplishments of the present study are in the three
aforementioned areas: The critical literature review included
vortex/boundary interaction, an area studied previously by

Flandro, Combustion/Acoustic interaction in the coreflow, due to

residual exothermicity, studied previously by Ben-Reuven and -
Caveny in conjuction with nitramine rocket propellants, and

visco-acoustic coupling. All of these areas have been covered

extensively in the two foregoing annual interim scientific

reports under this contract.

The subject of turbulence-combustion interaction has also
received due coverage during the present study, although outside
of the areas covered in the two previous interim reports.

An additional objective of the study was to establish and
maintain contact with the experimental study, carried out in
parallel at UTC/CSD, under Dr. Robert Brown. This has been
likewise carried out, through numerous discussions and exchange
of information, which definitely shaped both the focus and the
outcome of the present velocity coupling analysis.

Aside from the literature surveys published earlier, cf AFOSR TR-

82-1017, this analysis has two major accomplishments: (1)

Identification of the visco/acoustic coupling as a potentially

powerful velocity-coupled instability mechanism, through both

detailed order of magnitude study, as well as small-perturbation

(asymptotic) analysis, and (2) development of an explicit

numerical finite-difference algorithm, for solution of the

nonsteady, compressible, axisymmetric flowfield within the rocket R
motor, geared toward the elucidation of the visco-acoustic effect

predominant near the injected surface.

An interesting outcome of the present study is in the area of

steady injected internal flow. The singular small-perturbation S
analysis has enabled analytical expressions for the dimensionless C e
axial pressure drop, and the surface friction coefficient, in

terms of the injection Reynolds number and Mach number. These 1
afford exceptionally good agreement with the experimental data
obtained by Dr. Brown at CSD/UTC recentlu, as well as earlier
measurements by Olson and Eckert. These tend to be collaborated
by the numerical results generated recently by this author. The
evidence points to the plausibility of the visco/acoustic driving )
mechanism (as a necessary condition); in the meantime, one need
not invoke turbulence or other phenomena to explain the axial
pressure drop deviation from the pure inviscid (rotational)
theory of Culick Taylor, Berman, and others. The reader is
referred to Appendices A and B for detailed discussions.

v

The small perturbation boundary layer analysis of the viscous
sublayer at steady state has been the subject of two
publications, presented at the recent (1983) 20th JANNAF
Combustion Meeting, and at the Aercspace Sciences Meeting of the
AIAA (Jan. 1984); the latter has been submitted to the AIAA
Journal for publication. Both papers are enclosed in Appendices
A and B mentioned above.
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At the closing of the present research period, the computational
finite-difference algorithm developed has just begun to yield
useful results. Numerical stability was demonstrated in marching
toward steady state with fixed injection rate and wall
temperature imposed; the initial data utilized Culick®s inviscid
solutions. Some of the results following 1200 timewise
integration steps are shown in Figures 2.1 through 2.4 herein.
In particular, the computed axial pressure drop shown in Figure
2.1, is similar to that measured by Brown et al (1983), and
correlated by the perturbation analysis of Ben-Reuven, all of
which depart from the axial pressure drop predicted by the
inviscid theory. 1Integration can be readily carried out with
imposed time-dependent boundary data, to simulate the perturbed
exit nozzle behavior in the CSD experiment.

The explicit finite difference algorithm developed herein follows
a modular design, and allows for arbitrary radial mesh
specification (within the limits of physical resolution and
numerical stability). The modular structure can readily
accommodate additions [more comprehensive boundary data
treatment; accounting for combustion; including turbulence
transport], in the form of subprograms. A joint publication with
Prof. Vichnevetsky is in preparation on the numerical stability
features when source terms are incorporated.

The remainder of the present report comprises a User”’s Manual for
the "MOSCO" finite difference program. Three chapters provide
background information regarding the formulation of the partial
differential system and the finite difference algorithm used for
solution, a discussion of the program features, and a discussion
of the results, respectively.
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2. FUNCTIONAL DESCRIPTION OF THE FINITE DIFFERENCE CODE.
2.1 INTRODUCTION.

MOSCO is a finite difference FORTRAN code, to solve the viscous,
time-dependent, compressible Navier-Stokes equations. The four
equations of motion, for an axi-symmetric geometry are:
continuity, axial momentum, radial momentum and energy. The
finite difference algorithm used is a modified unsplit MacCormack

scheme: The general mode of integration 1is explicit predictor-
corrector.

For a complete description of the original scheme and a
discussion of the limitations thereof, the reader is referred to
the two original MacCormack papers listed in References 1 and 2.

A detailed discussion of the partial-differential system is given
in Ref. 3 herein. It should be pointed out that for a nonsteady,
compressible configuration, the flowfield is non-sclencidal,
i.e., divergence of the velocity vector is nonzero. This gives
rise to a number of terms emanating from the symmetrical part of
the stress tensor, which can not be 1ignored in general.

The two important modifications made to the original scheme are
as follows: (i) only advective terms are written in the
conservation form (general flux terms), while dissipative terms
of all kinds appear as “source' terms (non-conservative) in the
finite- differenced eguations of motion. Also, (ii) arbitrarily-
varying radial mesh size is employed, along with a uniform axial
mesh: along with the variation imposed in (1), this neccessitates
proper representation for the second-order and radially-space-
centered first-order derivatives, to reflect the aforementioned
nonuniformity and maintain second-order consistency of the scheme.

Actual implementation of the MOSCO program involves very semall
radial mesh-size near the r=1 boundary, representing the porous,
injected wall. The mesh is then gradually increased tcward r=0,
at the cylaindrical centerline. A ratio of 1/100 Dbetween the
respective mesh sizes has been tried. A similar ratio would also
hold normally between the smallest radial increment and the
(uniform) axial mesh size.

Preliminary small perturbation analysis has pointed out the
necessity of proper accounting for the near-wall processes, where
viacous disaipation is dominant. The 1mportance of these viscous
processes to proper understanding of the steady state axial
pressure distribution has been discussed elsewhere. The
interaction between acoustic vibrations and the dissipative
processes 1n this nearfield drives the visco-acoustic coupling
mechanism, an important component of nonlinear velocaity coupled
inatability, For this purpose, the fine radial stepsize near the
wall 1s 1mplemented. )

.

The wunsplit MacCormack scheme, under these conditions, has one




major drawhack: to maintain numerical atability, the Courant-

Friedrichs-Lewy condition 1s implemented to calculate the time
step size according to the smallest spatial increment.
Cosequently, the overall (uniform) time step is very =small,
considering the value 1implied by the radial mesh near the

centerline, or the regular axial mesh. Over a period of several
thousands ot timesteps, this might lead to an appreciable error
regarding the timewise profiles. In this respect, the split

MacCormack method might be superior for obtaining long-term
transient or low frequency behavior.

The present algorithm is set up to integrate the fully dynamic
syastem. Ita limitations regarding long-time and low frequency
behavior are recognized. The major advantage of the aystem
relative to 1mplicit integration algorithme 12 quite obvicus, 1n

obtaining typically low-coat and low CPU performance. Other
advantages, due to the specific construction, are the modular
atructure, 1n which changes in the formulation are easy to
implement, (details specific to the partial differential systenm

being solved appear only in three subprograms) additions can be
readily made (through auxilliary subprograms) and programming
errors can be detected easily.

The general structure of 0SC03, the cold-flow simulation FORTRAN
code 138 depicted in Fig. 1. This 1s a development based on the
earlier RO5CO-series, reported previously by this author.

The logic of the timewise integration cycle i1s shown in Fig. 2.
The particular configuration corresponds to the marching toward
steady state mode, pertaining to the configuration of the program
listing 1n Appendix A herein.

A concise descraption of the partial differential system, the
boundary data, and the finite difference method 1is given in the
following Section. This is followed by a detailed glossary of
1input parameters, and the output maps. Options regarding the use
of output data ftiles were not aincluded; other options which
reguire extensive setup (and depend crucially on printer
conflqurationd, such ae prainter-plote, were omitted. The program
listinyg, and a sample ocutput are given in Appendices A and b,
respectively.
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The question of relevance of cold-flow simulation to internal
rocket flows, and the use of porous materials to simulate
propellants has been raised many times. Based on the present
experience, it seems that both are highly relevant, although
obviously defficient in several ways. For instance, normal
propellants respond to & positive pressure perturbation by
raising the burn rate, while a porous plug would yield a lower
mass flow rate if the pressure differential across it decreased.
The inability to simulate the high thermal-gradient region near
the aurface of a propellant with the existing injected flow
techniques is another drawback. On the other hand, probing within
the interior of a burning propellant grain is satill quite
impossible. The conclusion drawn is that cold flow injection and
porous materials have many limitations, but could still be
successfully utilized for study of certain 1limited physical
interactions, certainly not the entire instebility phenomena. An
excellent example of such limited application is the visco-
acoustic mechanisnm, which comprises & clear fluid dynanmic
phenomenon.

The importance of interior fluid dynamic considerations to the
proper understanding of solid propellant motor behavior can not
be overemphasized. Whether it is the highly-ordered, frequency

dependent visco-acoustic phenomenon, acoustic-combustion
interaction, or similar mechanisms of interaction, or
turbulence/combustion effects-- all require details of the local

fluid dynamic processes. It is therefore strongly recommended
that both theoretical analysis and idealized experimental
simulation of the internal flow field of solid propellant rockets
be continued.




2.6 CONCLUSIONS AND RECOMMENDATIONS

A considerable amount of experimental data has been generated by
the cold-flow simulation effort at UTC/CSD, by Dr. Brown.
Nonsteady wall heat transfer coefficient measurements as well as
hot wire anemometry were utilized. Since the wall heat transfer
is very important to the understanding of combustion instability,
the folowing comments are made. It appears that the coherently
averaged apectra of the wall heat tranafer, which filter out the
RMS or DC-effects due to turbulence and viscous second-order
interactions, demonstrate the validity of the visco-acoustic
coupling mechanism, sauggested by this author in our 1982/83
Interim Report. The original figures from Brown’s Annual Report
have been merely re-grouped here, in Figa. 2.8 through 2.12.

These figures show that the effect of increasing peturbation

amplitude, (from A’/A of 0.6 to 5.9%) and increasing perturbation

frequency (from 76 to 170 Hz) both cause enhanced wall heat

transfer, coherently with the acoustic frequency, at axial

stations considerably upstream of the velocity antinode of the

first or second axial acoustic modes. All of these effects are -
explained by the visco-acoustic coupling mechanism.

When the same data were re-cast with the DC effects included, it

is evident that the low amplitude phenomena are swamped by near-
- wall turbulence effects and other high- frequency noise, peaking
at the surface (as corresponding hot-w:re traverses indicate).
This occurs at roughly 10 diameters downstream of the head end.
The higher perturbation amplitude and <£frequency cocherence,
nevertheless, persist way downstream of this point.

Other hot wire anemometry data, obtained by Dr. Brown during
1983, seemed to indicate relatively high turbulence intensities
near the centerline (close to the head end) while these
intensities increased toward the wall at downstream stationa. It
should be emphasized that these data were mostly obtained at the

low perturbation amplitude of A’/A = 0.6% ; close to the
centerline, the axial velocities are high, but du/dr is
vanishing; in the meantime, both the radial velocity component as
well as dv/dx are vanishingly small. Near the wall, however, the
radial velocity 1is nonzero, and both du/dy and dv/dr are
appreciable, while the axial velocity is small. The foregoing
physical picture holds for most of the flowfield. One therefore
expects the vorticity effects, responsible for turbulence
generation, to be strongest near the walls, even though the walls
are injected.

It is therefore suggested that the results pertaining to this
low-amplitude of perturbation be thoroughly checked prior to any
far reaching conclusions regarding the origin or evolution of
turbulence in internal injected flows. The experimental evidence
of most significance (and relevance to velocity coupling
instability) seems to be the steady atate data, and the high
perturbation amplitude and frequency data.

................
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On the other hand, the corresponding (not normelized) radial

velocity distribution et the same station, shown in Fig. 2.7,

departa appreciably from ites inviecid counterpart. This is not -
aurprising, as it infers that du/dx (axial acceleration) ia

aomewhat leas than the inviascid prediction, since

Why ~ — (VA +v/r)

according to the continuity equation with negligible
compressibility; so that whenever dv/dr obtains a positive
increment, as occurs near the surface in Fig. 2.7, du/dx
decreases accordingly. This is conaistent with the information
obtained in the axial pressure drop, Fig. 2.4, which showa that
the computed p-drop ia somewhat smaller than the theoretical
inviascid prediction, since the axial acceleration balances the
axial pressure gradient in the coreflow, cf Appendix A.

In conclusion, the steady state results herein are both self-
consistent as well as in agreement with the predictions of the
viscous (perturbational) wall layer analysis, and the recent
reagsurements of Brown. The algorithm has been demonstrated
numerically stable in thisa mode, and can be utilized for -
nonsteady flowfield simulation. .
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2.5 DISCUSSION OF RESULTS

Some of the results obtained from the numerical saolutions will be
diacussed herein, pertaining to marching toward steady state. The
reader is referred to Figs. 2.4 - 2.7 in which converged data
following 1201 timewise integration steps is summarized.
Conaiderably more data is available at both the laast step and
intermediate time-levels as well; a partial output listing of the
same datum case discussed herein is appended to the User’s Guide,
Chapter 3 .

It should be pointed out that there is nothing particular about
the Datum Case configuration used. The specific radial mesh
divisions are in no way "“the best' or optimal. The axial meah
size is quite large (1.0 in the dimensionless system, i.e., equal
to one radial length); smaller mesh size and considerably more
pointa in both radial and axial directions would definitely yield
better quality of data. The computer program can accommodate both
with only minor (and obvious) modification to Common statements
and the input data.

The physical input data used was to aimulate cold nitrogen
injection under experimental conditions similar to those used by
Dr. Brown at CSD, withou attempting to simulate any particular
set of conditions exactly. Again, conditions like the injection
~ velocity, temperature, chamber reference pressure, etc can be
. o readily varied, over a aufficiently wide parametric range.

In the meantime, it is asserted that the finite difference scheme
is numerically astable, within the limits of time-resolution
discussed in Section 2.3, and that the formulation as well as its
implementation correspond to the compressible Navier-Stokes
equations, in axisymmetric form. In numerous teats with coarse
radial mesh, (the viscous scales being much smaller), numerical
instability consistently developed; the aforementioned stability
therefore obviously depends on the degree of spatial resolution
near the surface.

In Fig. 2.4 he axial presaure drop is plotted againast axial
distance, x. the trend in departure from the inviscid solution of
Culick is the same as that measured by Brown at CSD. In Fig. 2.5,
the friction coefficient and Stanton number (heat transfer
coefficien) are plotted againat the injection ratio. The nearly-
linear trend is asimilar to that measured (for Cf¢) by Olson and
Eckert. Departure from the inviacid theoretical normalized axial
velocity profile is quite amall at 10 radial distancea from the
head end, as shown in Fig. 2.6.
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2.4 THE BOUNDARY CONDITIONS

As differs from the physical plane, all of the dependent
variables in the numerical simulation must be apecified along
each of the four boundariegs. The available physical boundary dats
has been discussed already in section 1.2 herein.

Along the centerline, (x,r=0), all of the boundary data is physically
available. The radial gradients of the density, axial mass flux,
and enthalpy, are all zero; the radial velocity is zero:

U1, 1,K)=U(1,2,K)
U(3, 1,K)=U(3, 2, K) 5 U@)L;K):O-
Uta, 1,K)=U (4, 2, K)

Along the porous sidewall, (x,r=1) the axial velocity is zero,
the 1injection velocity and the wall temperature are specified,
and the pressure extrapolated, using a three-point algorithm:

Coe—- POROUS SURFACE: PRESSURE EXTRAPOLATED. WALL ENTHALP=HWP.
DO 3 K=2, KXX
U4, JRR, K)=(RRS*U (4, JRM1,K) -U (4, JRM1-1,K)) /REM1
3 U(1,JRR, K)=U(4, JRR, K) /HWP

TICEDJEEbkf)==(l
RRs = [ F(RR) - r(oen-2)/Ar(Ire—1) ; RsSM1=pRsS—1

This allows calculation of the density at the wall:
© = /g (LooP #3 ABIVE).
w

At the head end, (x=0,r), both velocity components are =zero,
while the wall temperature 1is specified. The pressure 1is
extrapolated axially to the wall, using a two-point, second order
accurate extrapolation:

————— HEAD END:X=@. NOTE:U2=@ AND U3=@, ALWAYS. WALL TEMF.=HW=F(R).
DO 2 J=1,JRM1
U4, J, 1)=U(4,T,2)%2.-U(4, T, 3)
U, J, 1)=U(4,J,1)/HWO
DO & M=1,MXX
2 UM, J, KXX)=U (M, J, KXM1) #2. —U (M, J, KXM1—1)

From which the density at the wall is calculated:
Clx=0) = Hx=0)/W, <f. U#,7,1) AtovE.

At the exit plane, all of the variables are extrapolated axially,
using a two-point formula:

UG, kxx Y= 2 U(T; 0x-1) = 0(F, xx-2.)

which simulates a continued duct, not the entrance to a choked
nozzle; to simulate the latter, characteristics segments have to
be utilized locally, 1n a finite difference form.
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currently used, and the (regular) axial mesh size are such, that

the minimal timestep 1s always obtained by use of delta-R,
namely:

At, = G-Ax/’r;mix (C+u) <Ate

(20
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Obviously, the differences between adjacent radial increments }
should be small where the third order radial derivative 1is

expected to be large, to insure small truncation error for the

second derivative. This principle 1s 1ndeed fcllowed in the
neighborhood ot the porous wall; near the centerline, however,

the third-order radial derivatives are expected to be quite

' negligible, so that & larger radial meshsize variation can be '
implemented.

The reason for the peculiar weighting factors in the radial flux
terms within the predictor and corrector steps is now clear, to
maintain second-order accuracy in the overall (combined) timestep

i ‘ e integration; otherwise, (if the same finite-differencing is used v
for both axial and radial derivatives), the algorithm 1s
consistent only to first order, with a radial diffusion term

which 1s proportional to the difference between two adjacent
radial 1ncrements.

g The timestep si1ze 1s determined by the smallest spatial v
increment, using the Courant-fFriedrichs-Lewy stability condition, )

At =Ake =RAr,0 /ngt)c(_c-q- V), CE VM,

19

’ where the coefficient B < [ (strictly), 1is +typically taken
between 0.%5 and 0.8, ]

Frevious error analysis of a modified Lax-Wendroff scheme <(one

dimensional, nonste dy), which involved source terms has d

indicatea that wusing a CFL number B=0.5 has clear advantages '

® toward reduction of the induced numerical ditfusivity. Due to the |

inherent similarities between both mathemataical systems ]

(predominantly hyperbelic in  axial direction), and numerical o

method used (overall central-differences 1in space, predictor- A

corrector, explicat), the same CFL number 1s currently T
implemented. Pertormance 1n marching toward steady state 1s

® clearly superior to i1dentical cases using datum case i1nput with !

“ R-0.8, in  terms ot a1improved stability. In this mode of ]

operation, the «cost 1s an obviously longer overall itegration R

time. j

.

The relative magnitudes of the smallest radial increment -




2.3 THE FINITE DIFFERENCE ALGORITHM: 2-STEP/UNSPLIT MacCORMACK

Following the original scheme by MacCormack, (1971, 1975) the

following explicit two-step procedure 1s proposed, in a
predictor-corrector manner:
n v n
UH-H U" At 6“'6""> - &t “lrl : ra"i)""@-tpj—l)
e ax h Y A o, %
n
+ A S,y
(13
— N+t
U n i\ At Gpy-Ge) _
, Z\ et ™ AX 4
| At ZACr P B —GENT At <n, S
- R ek < W vas ik (e AR + At :S ~ ﬁ)
PR GRT AY + e
) K
(14>
where overbar denotes ‘'predicted” properties. The main
differences from the original MacCormack scheme are in the source
terme herein (the original was written for conservation-form

differential system), and the special treatment required by the
uneven mesh. The “source" terms herein contain the dissipative
effects 1n the system.

Fig. 3 depicts the spatial mesh in the axi-symmetric flowfield.
The configuration employs @ nonuniform radial mesh distribution,
which 1e very fine near the porus wall (r=1) and much coarsed
near the centerline (r=0). The axial mesh is uniform.

The overall configuration of the two steps, (first backward, then .

forward) when combined, is space-centered. To remain at the )
second-order acuracy level in the radial direction, for the S
source or S-terms which involve first and second derivatives, the L
following finite differencing algorithm is utilized: q

oQ 2 (®'M'Q—l>n 3 <@¢+|’Z@'c+@"'f> (15>
oX TN ZAax 43 ’@xw j

(16)

.........




tranacnic region 1is outatlde of the domein of lntersat 4ar the
present system.

The initial data 1is specified as the following arbitrary (in
principle) distributions,

V(t=0,r,%) =V°(r, ) (12)

The foregoing formulation is the subject for the numerical
0OSCO/COLD-FLOW algorithm. Obviously, mathematical closure is
obtained when additional boundary data are invoked:; this 1is
attained by wusing the appropriate characteristics relations
near the boundaries. The auxillary boundary data are discussed in
the following section.
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@
;’ The radial and axial flux terms are, reapectively,
i T = 2
*l FT = (9Y, ov? puv, Yehv)
o T . (eu, ov L '(hut)
oL G* = {7\ U+ “
L <€ )? )? it (V.S e (7>
The source terms are defined as follows. S; = O,
8_47'3 _L ) (. 2P
2~ eeor /T e T

[fazv _LTB )] 1.

0w { 4 30% 9] - ?

2
HE-O%+LZ)+ GBS
8>

The following physical boundary data are available for the cold-
flow simulation problem: on the centerline, (t, r=0, x)

\/==<)7 A =0 2251 =9 1%;%’::C)

oY D] J (9)
at the 1njected porous surface, (t, r=1, x)
v:—Va(th)) uU=0 h=hw (58 (10>
at the nonpermeable, solid head-end, (t, r, x=O
V=0, w=0, h=hy(r;t) (11>
The exit plane, defined by (t, r, x=L), forms an entrance 1into a
short convergent nozzle section, asaumed choked at all times:

detalled deecription of the nozzle entrance and 1ta inherent
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2.2 FORMULATION OF THE DIFFERENTIAL SYSTEM

The four eguations of motion pertain to compressible, viscous,
nonsteady motions in an axisymmetric flowfield. The system is

written in differential form, employing source terms to represent
the various dissipative effects.

The following dimensionless independent variables are introduced,
- * %/~ x % * L
r=rvyR, x=x¥e, t=t%:
where tg = R&/vS.

The corresponding dependent variables are:

V=V w e uE S
S=Cer, =W/, ¢=t*/F"

The properties used for non-dimensionalization are the 1njection
velocity, the reference gas density, and the reference chamber
pressure. The corresponding thermal enthalpy, hg , 12 calculated
from the caloric equation of state,

=i 5 b=k @

where gamma = Cp/Cy is considered a constant. The reference
adiabatic speed of sound 1is,

A¥ = (7)/ R,k/ vl )‘/2’—_— \ K’a”..( ) Wt (4)

The corresponding injection Mach number, Reynolds and Prandtl
numbers are, respectively,

M., = V,"5x

Eeo = ?ok\/ofzf/[b‘f. ) F= M"qf/ﬂ* ()

Thus, the dimensionless differential system can be written in
general, for O ¢ x<L, O < r <1, and t > O :

LekZlr)+ 52 =5

6)

and the dependent variable vector 1s:

UT=(7, ev 50, p=gh)
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3. USERS MANUAL forxr TMOsSCOoO-*"

: - a—e—w
R e e T . -

COLD FLOW SIMULATION PROGRAM

L vV %5 Al i 9 Siabas LRt R RIC LRI R SO B¥ VA SPruppw PR = Y

3.1 INPUT DESCRIPTICN

3.1.1 BLOCK DATA Statement

BLOCK DATA

COMNON/AREAD/ VZERD, PSTAR, TSTAR, VISC, COND, WBAK, RUJ, HSTAR, CP,

+CFL, RSTAR, XSTAR, X0, IPRNT1, IPRDT (2), ICORR(2), INC(3), ITMAX, VO, PO, RO

COMMON/AREA1/BANA, AN, GANE, BAN3, GAM3T, C61, C62, 63, C54, 065,

+RED, END, EXD2, P1, P1T, EXM, RHOS, SSND, PRN, DX, TOOX, DX, RR (26) , DRR (25),

+R2(26) , R3(26), XX (26) , DT, EPS

COMMON/ARERR/MAX, JRR, KXX, JRM1, KXN1, KXFR(6) , KXPWAX, JRER (6),

+JRPMAX, DEX (4, 26, 26) , DFR (4, 26, 26), VIC (4, 26, 26 , HWO, HWP, RRS, R

DATA COND, PSTAR, RSTAR, XSTAR, GAMA, CFL/. B166, 2. BOES, . 85, . 55, 1. 4, . 5/

DATA VIERE, VISC, TSTAR, WiAR, RUJ/1. 009, 1.E-5, 278., .828, B.314/

DATA JRPMAX, JRPR, JRR/G, 1,3,5,7,9,11, 1&/

DATA KXPWAX, KXPR, KXX/6, 1,3,5,7,9,11, 12/

DATA V0, PO, RO/ 1. 000, 16000, 1. / , ITAAX, IPRNT1/1281, 280/

DATA IPRDT, ICORR, INC/-1,8, 8,1, ~-1,8,1/, MXX/A/ -
; DATR DRR/. 85,.15,.2, .15,.15, .1,.1, .86,.825,.01,.885, 14%0./ : -
° 3

All of the input enters through the BLOCK DATA statement, and
tranamitted to the remainder of the program through the labelled
Common Blocks.

Throughout the program, all dimenaional parameters are in SI
units. The integration itself is carried out with dimensionleas
variables; suitable tranaformation of the differential system has
been made, prior to utilization of the finite difference
algorithm herein.
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The seven input data lines are discussed in the following

glossary.
Line 1
COND = thermal conductivity, J/m-s-R of the gas (air)
PSTAR = reference pressure, N/m2
RSTAR = inner radius, m
XSTAR = axial length, m
GAMA = ratio of specific heats, Ca/Cy
CFL = Courant~Friedricks-Lewy number
Line 2
VZERO = 1injection velocity, m/sec
VIsC = viscosity coefficient, Kg/m-s
TSTAR = ref. temperature of gas, K
WBAR = mean molecular weight of gas, kg/mol
RUJ = universal gas constant, J/mol-K
Line 3
JRPMAX = total number of points to print out in radial
mapping (See output)
JRPR = radial position vector; numbers correspond to
distinct radial stations, and their total number
should agree with JRPMAX.
JRP = maximum number of meshpoints in radial direction
(including ends)
Line 4
KXPMAX = (same as JRPMAX) total number of axial points in
printout of axial maps
KXPR = axial position vector; axial mesh indices of
points to be printed out; total number should be e
equal to KXPMAX . :f
KXX = maximum number of axial mesh points, including 4

boundaries
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RO

ITMAX

IPRNT1

Line 6

IPRDT

ICORR

INC

Line 7

DRR
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dimensionless (absolute) injection velocity
dimensionless reference pressure
dimensionless inner channel radius

total number of timewise integration steps
allowed

number of timewise integration steps between
output

predictor step, index displacement vector
(backward differences), used in DGDX and DFDR

same as above, for corrector step (forward
differences)

index shift vector for the central-difference
algorithms of SORCE subprogram

radial increment, starting with increment near
cengggline, and ending with that near the wall
(last)

NOTE: DRR is dimensioned to 26 and empty places
above 12 must be padded with zeros.

CAUTION: Performance of the program is quite
sensitive to (small, required) step size near
wall.

This concludes the entire input data set.
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3.2 MAIN

C-—FBR VERSION OF WACCORMACK INTEGRATION SCHEME. 12/9/83
C~-—FIRST TRIAL:UNSPLIT, SINGLE PREDICTOR/CORRECTOR CYCLE EACH BT,
C--——VARIABLE RADIA. STEPSIZE. ARBITRARY DR{J)=INPUT VECTON.
COPMON/ARERO/VIERG, PSTAR, TSTAR, VISC, COND, W3R, RUJ, HSTHR, CP,
+(F_, RSTAR, XSTAR, XC, 17RNT1, IPRDT(2), ICORR(2), INC(3), ITIAX, VG, PG, RO
COMON/ARER1 /BANA, BAx 1, GANZ, B3, GAM3T, C51, 082, 083, C54, A9,
+RED, EMO, EMGZ, P1, FIT, EXM, RHOB, SSND, PRN, DX, TODY, DX, RR(26) , DRR(25)
+R2 (26),R3(26), XX (26), DT, EPS
COMMON/AREAZ/MXX, JRR, KXX, JRM1, KX%L, KXPR (6) , KXPMAY, JRPR(6),
+JREMEX, DX (4, 26, 26) , DFR (4, 26, 26) , VIC (4, 26, 25) , HWD, H4F', RRS, RSMI
COMMON/ARERS /L (4, 12, 12), UB 14, 12, 12), S 14, 12, 12) , 5B (4, 12, 12)
TIME=L,
CA_ SDATA
K9
D0 1 L=t, ITMAX
IF (X.LT, IPRNT1)BO 70 2
CALL PRINTZ(TINE,L)
K4
& CONTINE
CALL TIMNTY (XX, JRR, XX, TifE, DT)
KK
1 CONTINE
g
END

The MAIN program just calls for calculation of the fixed
parameters and the initial data profiles, all in aubroutine
SDATA. Then, in Do-loop #1 timewise intagration is called out
each timeatep, by calling subroutine TIHINT. Printing of the
variable tables of interest is made by calle to sobroutine PRINT,
each preaselected number of timesteps: the integer IPRINTI1
controls the number of timeasteps between such output dumps.
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3.3 TIME-INTEGRATION PROCEDURE

3.3.1 Subroutine TIMINT

SUBROUTINE TIPNTY (WF, JF, KF, TIME, DT)
C--—-#EBR VERSION OF UNSPLIT WACCORMAK TINE MARCHING. 12/3/83.
COMMCN/AREAO/VIERD, PSTAR, TSTAR, VISC, COND, WEAR, RUJ, HSTAR, CF,
+CFL, RSTAR, XSTAR, XD, IPRNT1, IPRDT (2) , ICORR (2) , INC(3), ITmAX, VO, PO, RO
COMMON/AREAZ/PXX, JRR, KXX, JRML, KXK: , KXPR(6) , KXPHAX, JRER(6)
+JRPMAX, DEX (4, 26, 26) , DFR(4, 26, 26), VIC (4, 26, 26) , WO, HWP, RRS, RSN}
COMMON/ARER3/U (4, 12, 12),, UB (4, 12, 12) , S (4, 12, 12), SB (4, 12, 12)
C——PREDICTOR STEP
CALL DFDR (W, JF, KF, U, 2, IPRDT)
CALL DBDX (W, JF, KF, U, 2, IPRDT)
CALL SORCE1 (M, JF,KF, U, §)
D0 6 w<1,0F
0C 6 J=2, JR¥
D3 6 K=2, Kmt
6 LH 08, J,K)=ui (%, J, K)-DT#(DER (X, J, K) $D6X M, J, K) -5 (¥, J, K))
£-----CORRECTOR STEP
CALL ENDRY (KF, JE, KF, UB)
CA_. DFDR (¥, JF, KF, LB, 2, ICORR)
CA DBDX (%, JF KF, UB, &, ICORR)
CA_. SORCEI (M, JF,KF, LB, 5B)
00 7 L
DO 7 J=2, JRei
DO 7 K=2, KXny
UK, J,K)= (UM, J, K)+UB (M, J,K) ) /2. -, SEDT#CDFR K, J, K)+DBX (M, J,K)
- - (S(M, J,K)+SB (M, J,K)) /2.)
7 CONTIMUE
CAL BNDRY (¥, JF, KF, U)
TIME=TIMEADT
RETURN
END

Subroutine TIMINT carries out the timewise integration process
for the unsplit MacCormack scheme. The Predictor step involves

calculation of the radial and axial flux terms, based on backward-

differences;: this is carried out for the entire interior of the
physical field by calls to subprograms DFDR and DGDX,
reapectively. The integer vector IPRDT=(-1,0) controls the
backward differencing. A call to asubroutine SORCE establishes the
“source' terms, i1nvolving dissipative effectas. The second order
differentiasl terms are discretized as central differences in
subroutine SORCE. Subsequent to these calls, the entire
dependent-variable (predicted) vector, UB, is calculated in Do-
loop #6.

Continued
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RHOG=PSTAREWBAR/ (RUJFTSTAR)
SSND= (GAMA*PSTAR/RHOG) 4. 5
RED=R40G4VIERD#RSTAR/VISC
E¥S=1. /SQRT (REQ)
EXD=VIERD/SSND
EMR=EM0##2
XG=XSTAR/RSTAR
GAM1=HAmA-1.
GRMZ=6Ar1/GAMA
BAYI=CAMAREMO2
GAr3T=6AM3 /2.
C51=1./6AM3

262=4,/3. /RED

62=1. /RED

C65=5Am1 #65AM3/RED
H¥=1,/(GAM3¥RED)
HSTRR=PSTAR/ (GAMC#RHOG)
CP=HSTAR/TSTAR
PRN=VISC4CP/COND
C64=GAMA/REC/PRN
JAr{=JRR-1

KXMi=KAX-1

wAKL=NXX-]

DX=X0/Kxm1

T0Dx=2, #DX

DXZ=DxaDX

Continued

MRS W e
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The first group of parameters calculated are as follows.

RHOG ref. gas density, kg/m3

SSND ref. adiabatic speed of sound in gas, m/sec

REQO injection Reynolds number, based on the injection
velocity and the chamber radius.

EPS the small parameter pertaining to viscous effects

EMO injection Mach number

X0 dimensionless axial length

EKM second dimensionless parameter denoting the retio of
inertial to viacous effects: Km in the analysis of
Appendix A.

HSTAR ref. specific thermal enthalpy, J/kg

Ccp ref. specific heat, isochoric, J/kg-K

PRN Prandtl number

GAM«« conatant parameters associated with gamma, the ratio of
specific heats.

CGee constant parameters associated with Reynolde number
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3.5 SUBROUTINE SDATA - CALCULATION OF CONSTANT PARAMETERS AND
THE INITIAL DATA

SUBROUTINE SDATA

DIMENSION VR(26),VX (26)
LOGICAL DIFFPR
COMMON/ARERD/VZERD, PSTAR, TSTAR, VISC, COND, WBAR, RJ, HSTAR, ¥,
+0FL, RSTAR, XSTAR, X0, IPRNT1, IPRDT (2), ICORR (2), INC{3) , ITHAX, VO, PO, 8
COMMON/ARER ] /GAMA, GAML , GAW2, GAM3, BAM3T, (61, CB2, 63, C64, CAS,
+RED, EMO, EMGR, P1, P1T, EKM, RHOG, SSND, PRN, DX, TODX, DX2, RR(26), DRR (25),
+R2(26),R3(26), XX (26) , DT, EPS
COMMON/AREAZ/RXX, JRR, KXX, JRMS, KXM1, KXPR (6) , KXEMAX, JRER (6},
+JRPMAX, DBX (4, 26, 26) , DFR(4, &5, 26) , VIC (4, 26, 26) , KO, HWD, RRS, RSM1
COMNIN/ARER3/U(4, 12, 12) , UB(4, 12, 12, 5t4, 12, 12),, 5B (4, 12, 12)
COMMON/ARER4/DIFFPR

Continued

All of the information calculated herein is passed to the
remainder of the program through the labelled common blocks.

Continued
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3.4.2 Subroutines XPRNT1 and XPRNT2

SUBROUTINE XPRNTS (NF, JF, KF, P, 1), 1Y)
DIMENSION P (W, JF, 26), IX(JF), 7Y (26)

181 FORMATU/, 2K, RO = DIM.LESS DENSITY')
WRITE (6, 191)
WRITE (6, 182) (ZX(N), N1, JF)
D0 1 K=1,KF

1 WRITE(6, 183)2Y(K), (WP(1, 1K), J=1, JF)

184 FORMAT(/,2X,"VR = DIN.LESS RADIAL VELOCITY')
WRITE (6, 104)
WRITE (6, 182) (11 (N}, N1, JF)
00 2 K=1,6F

2 WRITE(6,103)2Y(K), WP(2, J,K), J=1, JF)

165 FORMAT(/,2X,"VX = DIM.LESS AXIAL VELOCITY)
WRITE (6, 185)
WRITE (6, 182} (ZX(N) ML, JF)
D0 3 K=1,KF

3 WRITE(6, 183)2Y(K), (UP(3, J,K), J=1, JF)

106 FORWAT(/,2X,'P = DIW,LESS STATIC PRESSUE')
WRITE (6, 106)
WRITE (6, 182) (TX(N), N1, JP)
D0 4 K=1,KF

4 WRITE(E, 183)1Y(K), (P4, J,K), J=1, JF)

182 FORMAT(BX, "Y', 6(2X," XI=" , F7.4))

163 FORMAT(2X, F6. 3, 6(1PE12. 4))
RETURN
B

SUBROUTINE XPRNT2 (ST, CF, FLX, XX, KXX)
DIMENSION ST (KXX), CF (KXX), FLX (KXX),, XX (KXX)
WRITE (6, 201)
28: FORWAT(//,2K,"SKIN FRICTION(CF) & STANTON NO. (ST, /) |
WRITE (6, 282) L
282 FORMAT (X, "X, BX, "CF" , 10X, "5T*, 2X, U1 (W) /LR(CLY? , /) J
D0 204 122, KXY
WRITE (6, 283) XX (1), CF (1), ST(D), FLX (D)
204 CONTIME : ]
203 FORMAT (2X, FS. 2, 5(1PE12. 4)) :
RETURN
N
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C——NOTE: THE VR AND DVR ARRAYS ARE TRANSPOSED (ROTRTED RBOUT THE
C———-MAJOR AXIS) RELATIVE TO THE PARENT U-ARRAY. THIS 15 ONLY FOR
C~———PRINTOUT RERSONS

WRITE (6, 98) TIME, L

C—-mWP8

WRITE (5, 16@)

CRLL XPRNTS (MXX, JRPMAX, KXX, VX, RP, KX)
1F(DIFFPRIGO TO 5608

WRITE (6, 201)L

WRITE (6, 100)

CALL XPRNT1 {MXX, JRPMAX, KXX, DVX, RP, XX)
OALL XPRNT2(ST, CF, FLXI, XX, KXX)

C——R-MAPS

S80e

508!
189
20
ol

9%

WRITE (6, 200)

CALL XPRNT1 (MXX, KXPRAX, JRR, VR, XP, RR)

IF (DIFFPR) 60 TO 5081

WRITE (6, 201)L

WRITE (6, 200)

CAL. YPRNTE (MXX, KXPMAX, JRR, VR, XP, RR)

CONT IME

FORWAT(//,&X, "X-MAP, AT DISTINCT RADIAL POSITIONS',/,1X,75('-'),/)
FORWAT (//,2X, " R-WAP, AT DISTINCT AXIAL PDSITIONS',/, 1X,75('-*),/)
FORMAT (//,2X, " DIFFERENCES BETWEEN CURRENT TIMESTEP NO.',14,/,2X,
#AND THE INITIAL DATA  U(K, J,K)-UINITIAL(M,J,K) 2 )
FORMAT(//,2X, " TIME =%, 1PE12, 4,54,  TIMESTEP NO. =',14,/)

RETURN

END

—Tv Ty

For eesse of carrying out the printing, the radial mapes VR(J,K)
and DVR(J,K) are transposed (rotated about the major axis):; this
allows use of exactly the same printout procedure in subroutine
XPRNT1, for both axial and radial variable maps. Following the
appropriate Table Header printouts, the four consecutive calls to
subroutine XPRNT1 affect printout, with four table groups, each
containing four single tables (one for each variable). The cal to
subroutine XPRNT2 affects printout of the friction coefficient
and Stanton number Table, following the X-maps.

Note that the length of each table ia not limited; the only self-
imposed format limitation used in the design is the compatibility
with a printer page wicdth of 80 columns. Consequently, there is

no sttempt to fit printout groups into any particular page
length.
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DO 208 J=1,JRR

DO 200 K=1,KXPMAX

KK=KXPR (K)

RHO=U(1, J, KK)

VR(1,K, J)=RHD

VR(2,K, J}=U(2, J, KK) /RHO

VR(3, K, J1=U13, J, KK) /RH0

VR4, K, D)=l (4, J, KK)

XP(K)=XX (KI)

DO 2100 M=1, X2

DVR(M, K, J)=VR{M, K, J)-VIC (M, J, KK)
IF(KK.67.1)80 T0 298

DVR(3,1, N4,

&0 10 2000 Continued
DVR(3, K, J)=DVR(3, ¥, 1) / (F18XP(K))
CONTINUE

A similar procedure igs carried out within Do-loop #2000, for the
radial printout map, VR, and itse corresponding difference-map,
DVR. Diatinct axial positions are now used, as specified in the
integer vector KXPR, again with an imposed maximum of &
positions; for each of these, the radial dependent variable
distributions are printed out, with XP denoting the corresponding
normalized, distinct axial stations. Note that in thie instance
the radial pressure difference map (not normalized) is calculated
inatead of the aforementioned axial pressure drop.

Continued
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C—— LDAD X-WAP ARRAYS

1108

1000
100

v e . -

DD 1009 K=1, KXX

D0 1009 J=1, JRPMAX

J3=JRPR(J)

RHO=L(1, 33, K)

VX {1, J,K)=RHD

VI (2, 3,K)=0(2, 33,K) /RHO

VI3, J,K0=U(3, 3, K) /R0

VX (4, 3, K1=U (4, J3,K)

R (1)=RR(IT)

MIM=MIX-1

DO 1108 M=l WX

DVX (M, J, K) =V (M, J, K) -VIC (M, JJ, K)
DVX (4, J,K) = (VX A, 1, 1) -VX (4, J, KD}/ VX (4, J, K) #EPS)
IF (K.6T.1)60 T0 1200
VX{3,J,1)=0,

B0 T0 1000

DVX (3, J, K)=DVX (3, J, K}/ (PL&XX (K))
CONTIME

Continued

In Do-loop #1000, the primitive dependent variable array VX is
calculated (still dimensionless), namely, the axial and radial
fluxes are replaced by the respective velocitiea. The purpose is
to create an X-map, in which the full axial distributions of each
variable are printed, at diatinct, preselected radial positiona:
up tc 6 such distinct radial positions are available with the
current setup, to facilitate printing with an 80-column nominal
page width. The integer vector JRPR stores the diatinct radial
positions to be printed; RP denotes the radial poaition values,
normalized.

In the nested Do-loop #1100 the difference array DVX (departure
from initial data) is calculated, for the density and the two
velocities; the fourth variable calculated therein is the
dimensionless axial pressure drop, normalized by the small
parameter epsilon (EPS). The axial velocity difference is
normalized by PI«X, to factor out the linear growth (due to
accummulated injection) along the axis.
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3.4 OUTPUT SECTION

3.4.1 Subroutine PRINT

SUBROUTINE PRINT2(TINE, L)

DIMENSION VX (4,6, 26), DVX (4, 6, 26), XP(6) , VR(4, 6, 26),, VK (4, 6, 26)

+ RO(6),ST(26)  CF (26), FLXI (26)

CONMON/ARERD/VIERD, PSTAR, TSTAR, VISC, COND, NBAR, RUJ, HSTAR, CP,

+CFL, RSTAR, XSTAR, X0, IPRNT1, IPRDT (2),, ICORR(2), INC(3), ITAX, V0, PO, RO
COMMON/AREA1 /GAMA, BAM! , GARZ, GAN3, BAM3T, C61, C62, CB3, 64, CBS,
+RED, EMD, EMG2, P1, PIT, EXN, RHOG, SSND, PRN, DY, TODX, DX2, RR(26), DRR(25),
+R2(26),R3(26) , XX (26) , DT, ERG

COMMON/RRER2/MX, JAR, KXX, JRW1, KXN1, KXPR(6 , KXPHAX, JRSR (6),
+IRPMAX, DGX (4, 26, 26), DFR(4, 26, 26) , VIC (4, 25, 26, HWO, HeP, RRS, RSM1
COMNON/ARER3/UI(4, 12, 12) , LB (4, 12, 12), 54, 12, 12), 5B (4, 12, 12)
COMAON/ARERA/DIFPIR

LOGICAL DIFFPR

C——CALCULATION OF SKIN FRICTION & STANTON NOMBER

DO 500 K=2, KXX

RADI=UIL, JRM, K)

WALLH=U(4, JRR, K) /U (1, JAR, K)

CENTH=L(4, 1,K) /U{1, 1,K)

CF (K) =VISCHU(3, JRML, K) / (RHO1#DRR (JRW1) ) /(. S#U(3, 1, K)#27Ui(1, 1, K))
ST(K) =-COND/CP# (U (4, JRM1, K) /RHO1-WALLH) /DRR t JRL)

IF (CENTH. EQ. WALLK)BO T0 500

ST(K)=5T (K)/ (43, 1, K) # {CENTH-WALLH) )

FLXI(K)=U(2, JRR, K) /U(3, 1,K) .
500 CONTIME Continued

\e

A e v s b ——— ——. ot s

Subroutine PRINT loads the output maps, calls for their actual
printing (through subroutines XPRNT1 and XPRNT2), and prints the
header for each output table.

Skin friction coefficient (CF) and heat tranafer coefficient (ST, )
Stanton number) at the porous injected sidewalls are calculsted
firast, using 2-point differencing. The resulting CF and ST

vectors will be printed out through subroutine XPRNT2, vs the .
axial injection (maea flux) ratio, FLXI, also calculated herein. ]

Continued




v yo——— P U e G

-40-

3.3.5 Subroutine BNDRY

SUBROUTINE BNDRY (I, JF, KF, W
DIMENSION U(NF, JF, KF)
COMMON/RRER2/MXX, JRR, KXX, JRM1, KXM1, KPR IE) , KPMAX, JRPR(B)
+ JRPWAX, DX (4, 26, 26) , DFR (4, 26, 26), VIC (4, 26, 26) , HWO, HWP, RRS, RSH1
C-—-MBR-VERSION OF BOUNDARY DATR TRERTMENT. 12/13/83
C——CENTERLINE, R=8. NOTE: L2=8 RALWAYS.
C——DU1 /DR=DU3/DR=DUA/DR=0 TO MAINTAIN AXIAL SYWETRY.
D0 1 K=2 KX
Ut1, 1,K)=0(1,2,K)
Ui3,1,K0=0(3,2,K)
1 U041, K)=Ul4, 200
C——POROUS SURFACE: PRESSURE EXTRAPOLATED. WAL ENTHALP=H®,
D0 3 K=2,KXX
Ut4, JRR, K)= (RRS#U (4, JR1, K)-U (4, JRM1-1,K}) /RSM1
3 Ut1, JRR, K)=U (4, JRR, K) /e
C——HEAD END:¥=8. NOTE:U2=8 AND U3=6, ALWAYS. WALL TEMP,=HW=F(R).
00 2 J=1, JRNI
Uth, J, 1)U, J, 2042, U4, 1,3}
UL, J, 1) =Ut4,J, 1) /HQ
D0 2 M1, WX
M, J,KAX)=U (K, J, KXNE )82, -0 (K, 3, KXi-1)
2 CONTINE
RETURN
END

. ~ -;-rq
X

Subroutine BNDRY is called following the predictor and the e
corrector steps, from subroutine TIMINT. The mode of operation j
is fully explained in the previous chapter of this manual.
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3.3.4 Special Functions

FUNCTION DDZ(R,B,D)
DDZ={B-A) /D
RETURN

XD
FUNCTION DDR2(A, B, C, D}, 08

C———SECOND DERIVATIVE FINITE DIFF. —NOMUNIFDIM MESW,
DDR2=2. ¢ (DD1 (B, C, D2)-DDZ (A, B, D1))/ (D1+32)
RETURN

BN
FUNCTION CDX2(4, B,C, D2)
C——SECOND DERIVATIVE FINITE DIFF.—UNIFORM MESH, CENTRL DIFF.
CDR2= (R-2. #B+C) /D2
RETURR
BN
FUNCTION DBAR(A, B, C, D1, 02)
DBAR= (D2+DDZ (A, B, D1) +D1#DD1 (B, T, 02) }/ (D1 +02)
RETURN
B
_ FUNCTION DDRK1 (MF, 0, D1, D2, DXT)
Ve DIMENSION Q(NF, #F) -
C-—HIXED-UP SECOND DERIV. , UNIFORM X, NON-UNIFORM R,
DUL=DDZ (@(1, 1),0(1, 3}, DXT)
2=DDZ{0(2, 1), 0(2, 3),DXT)
DU3=DDZ(D13, 1), 0(3,3), DXT)
DORX1=DBAR (DU1, DUZ, DU3, D1, D2)
RETURN

END
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C——-LIBRARY OF FINITE DIFFERENCE FUNCTIONS:
DVDX=DDZ (VT (2, 1), VT (2, 3}, TODX)
DUDX=DDZ (T (2, 1), UT (2, 31 , TODK)
DPDX=DDZ (U (4, J, K-1), {4, J, K+1),, TODX)
DVDR=DBAR (VT (1,2),VT(2, ) VT (3,2), DR, DR2)
DUDR=DBAR(UT (1, 2), UT (2, 2), UT(3, 2), DR1, DR2)
DHDR=DEAR (HT (1, ), HT (2, 2) ,HT (3, ), DR1, DRE)
DPDR=DBAR (U (4, J-1, K, Uh, J,K), U4, J+1,K), DR1, DRE) o
DRVDI=CDX2 (VT (2, 1), VT (2,2),VT (2, 3), DA2) T4
DRUDX=COXRAUT (2, 1), UT(2, ), LT (2, 3), DX2)
DEHDX=CDXZ{HT (2, 1), HT (2, 2) HT (2, 3), DX2)
D2VDR=DDRR (VT (1, 2), VT (2,2), T (3,2),, DRI, DRE)
DRUDR=DDRE (LT {1, 2) , LT (2, 2),,UT{3, 2), DR1, DRE)
DRHDR=DDR2 (HT (1, 2) ,HT(2, ), KT (3,2), DR1, DR2)
DeVDRX=DDRX1 (3, VT, DR1, DR, TODK)
DeUDRX=DDRXI (3, UT, DR, DR2, TOOX)
VOR=VT (2, &) /RR(J)
C-——S0URCE TERMS:
St1,3,K)=2.
§(2, J,K1=-CE14DADR + CB2# (VDR-VOR) /AR ()
+ 4053+ (D2VDX+D2UDRY/3. ) +C52¢D2VOR -
§(3, J,K)=CB3# { (DUDR*DVDX/3. ) /RR (1) +DRUDRADEVDRY/3. ) +CE4DEUDX
S(4, J, K) =5AM1# (VT (2, 2) #DPDR#UT (2, 2) 4DDX)
+ +0BA¥ (D2HDR+DR-DX+DHDR/RR(J))
+  +0B5# (2, # (DUDX#2+DVDR¥#2+VOR¥#2) + (DUDR+DVDY ) 82
) - ~(2./3,) % (VDR+VOR+DUDX ) #52)

X 1 CONTINUE -
RETURN
END

WPV SO V)

v
)
o

Following the "LIBRARY OF FINITE DIFFERENCE FUNCTIONS®”, first
order and second order derivatives are calculated, using central
differences with the utility functions specially constructed for
this purpose. The variable names used are similar to the actual
differential expressiona. This form allows for easy detection of
errors.

The source terms, S(M,J,K), are finally calculated. The
parameterse involving gamma, injection Mach No, and Reynolds
number, are all pre-calculated in SDATA.
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3.3.3 Subroutine SORCE

) SUBROUTINE SORCE! (OF, JF, KF, U, 9
DIMENSION UK, JF, KF), (M, JF KF) ]
DIMENSION VT (3, 3),UT(3, 3), HT (3, '
C——R VERSIIN OF SURCE DISSIPRTIVE) TR IN WCCORNCK SDEE
COMMON/ARERD/VZERD, PSTAR, TSTAR, VISC, COND, MBAR, Ruj ;
+CFL, RSTAR, ISTAR, 0, IPRNT1, IPRDT 2), ICORR @), INC'3) ﬁmic‘;ﬁ PO, RO
mmaén&/ﬁ,'smx.m, BAK3, BAY3T, C6i , CB2, 053, CG4, L55,
\ s \Pi, 17 ERE 05 558D B ;v YA msimry man s
+na(25).ﬂ3(25),xx(es;'pngls ,aanu,ﬂﬁn,Dl,|ﬁuX,Dxc,Rntdb:,UKN|ESi,
COMMON/ARERZ/MAX, JRR, KXY, JRWE, KXM1, KPR (). KXPWA
+RPMAX, DGX (4, 26, 26), DFR (4, 26, 261, VIC (4, es,’es),nug' AP R R
IN(1)=-1, INC(2)=0, INC(3)=1 INDEX SHIFT OPERATGR, —
MTHE X-SHIFT DUK., NETHE R-SHIFT DO,
DO 1 K=2, KM
D0 1 J=2, JRn1
DD 3 W1, 3
K=K+ INC ()
00 3 N1, 3
, J=1+INC N
; RHO=UC<, JJ, KK)
L VT (8, )22, 11, KK) /R0
r UT (N, M=)(3, JJ, KK) /RHD
. 3 HT (N, 1)Y= (6, 7, KK) /RHD
DRI=DRR(J-1)
DR2=DRR(J)

"-‘vv
[ M e

Continued

e & o oo+ e " PR - o .

Subroutine SORCE carries out the calculation of the source terms
for the differential system. dissipative terms of first and
second order are calculated by use of central differencing. A
dummy index shift integer vector ia used, INC=(-1,0,+1), to
facilitate keeping merely an array of 3x3 of each dependent
variable (temporarily, to facilitate the local calculations),
these are the local arrayas RHO, VT, UT and HT, with «(JJ,KK)
serving as the 3x3 dummy indices. This facilitatea great savings

in core and storage requirement.

Continued
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SUBROUTINE DFDR(MF, JF, KF, U, IF, JTR)

C——#BR VERSION OF RADIAL FLUX TERW GENERATOR. 12/9/83
DIMNENSION U(WF, JF, KF), JTRUIF), F (4, 2)
COMMON/ARER2/MXX, JRR, KXX, JRM1, KXML, KXPR(6) , KXPHAX, JRER(6),

+JRPMAX, DGX (4, 26, 26), DFR (4, 26, 26), VIC (4, 26, 26) , HWO, He¥, RS, RS
COMMON/AREA1 /GAMA, BAM1, BAM2, BAM3, BAM3T, O61, 62, C63, C64, C6S,

+RED, EMO, EMD2, P1, P1T, EKM, RHOG, SSND, PRN, DX, TODX, DXZ, RR(26) , DRR(25),

+R2(26),R3(26), XX(26), DT, EPS

DO 1 K=2,KXri

DO 1 J=2, JRML
DRO=DRR(J+JTR(1))

DR1=R3(J) +DRO/DAR (J-JTRI(2))
0 2 N1, IF

JJ=4ITRIN)
F(1,N)=RRUJ)RU(Z, 1T, K)

ve=F 1, N) /1, 33, K)

IFINET.1BO TO 6

W=
60107
6 J1=JJ-JTR(})

W2=(RR(J1)80(2, J1, K) /U1, J1, KMRRUJ) #U(2, 3, K) AU (1, 3, K) ) /2.

7 F(2,N)=m2sti(2, JJ,K)

F(3,N)=V2rl(3, JJ, K)

2 F (4, N)=V2HBANAIU (4, ], K)

D0 3 M=, ¥

3 DFR(M, J,K)=(F (%, 2)-F (M, 1)) /DRI
1 CONTIME

RETURN
END

toa g a

, e

Subroutine DFDR carries out the radial differencing to calculate
the radial flux array, DFR. Operation is very similar to DGDX,
with JTR=(-1,0) for the predictor atep, and JTR=(0,+1) in the
corrector step, acting as the appropriate radial index shift. The
parameter VM2 is the mean radial advective velocity, analogous to
the UM2-term discussed earlier.

The differencing is not symmetrical overall, as the parameter DR1
is different for backward and for forward differences, to account
for the variable radial mesh size, and maintain second-order
accuracy overall; "overall'" herein means when the backward and
forward terms are combined, in the calculation of the U-array
following the predictor step, cf Do-loop #7 in subroutine TIMINT.
When a uniform radial meshsize is imposed, however, the
calculation automatically becomes similar to the overall-central
differencing in DGDX.

......................
..............
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3.3.2 Subroutines DGDX and DFDR

;‘ SUBROUTINE DGDX (¥F, JF, KF, U, IF, KTR)
~ C——HBR VERSION OF AXIAL FLUX TERY GENERATOR. 12/9/83.
; DINENSION (M, JF, KF) ,KTR(IF), 6(4, 2)
g COMMON/AREA1 /GAMR, GRS, BN, GAN, GANT, C51, CB2, C63, U4, CES,
- +RED, EMD, EVG2, P1, PIT, EXN, RHOE, SSND, PR, DX, TODX, DX, RR(26) , DRR (25),
i +R2(26),R3(26) , KX (26) , T, EP§
COMMON/ARER2/MXX, JRR, KX, JRML, KA1, KXPR{), KXPWAX, JRPR(5)
[ +JRPMAX, DGX (4, 26, 26), DFR (4, 26, 26), VIC (4, 26, 26), D, HWP, RRS, A1
D0 1 J=z, JRm
D0 1 K=, Kiwl
00 2 Net, IF
KK=KAKTR(N)
U3=U(3, 3, RK) /UL, 3, KK)
B(1, =3, J, KK)
B(2,N)=U38U (2, 1, KK)
IF(N.BT. 1)60 10 6
U3=L3
50 10 7
6 KI=KK-KTR(1)
3= (U(3, J, KD AULL, 3, KDDAUE3, 3, K0 /0, 3, KD ) /2.
7 513, N =UM3RU (3, J, KK) 4CB10 (4, J, KK)
2 G4, N)=U3HGAMREL (8, J, KK)
DO 3 M=l WF
3 DBX (¥, J,K)=(6 (M, 2)-6(h, 1)) /DX
1 CONTINLE
RETURN
EXD

Subroutine DGDX calculates the four axial flux terms in
discretized form. KTR=(-1,0) for the predictor phase, and
KTR=(0,+1) for the corrector phase. This integer vector is used
as an index transform, to calculate the dummy axial mesh index
KK. This way, both predictor (backward differencing) and
corrector (forward differencing) can be facilitated in the same
subroutine.

G(4,2) is the temporary advective term array, reloaded at each
new meshpoint, DGX is the axial flux array arising from this
calculation.

Note that the use of the mean axial velocity UM3 for the axial
advective term G(3,n) has been suggested by MacCormack(1974), to
alleviate problems inherent in the non-conservative nature of the
RHO#U=U terms.
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The corrector astep is similer in astructure, and is carried out
after the call to subroutine BNDRY establishes the variable
boundary data corresponding to the predicted interior UB-
values. Thus calle to subroutines DFDR, DGDX and SORCE establish
the corrected flux terms and source terms respectively. The value
of the integer vector ICORR=(0,1), passed in the argument lists
of DFDR and DGDX, insures that the same subroutines will carry
out forward differencing in the corrector phase. Do-loop #7 is
used to calculate the entire inner variable array, followed by a
call to BNDRY to re-calculate the variable boundary data. Note
that both predicted and corrected values of the source term
vector (S and SB respectively) are used in the corrector step,
which requires storage of the S array.
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C--—-CLCULATION OF TIMESTEP,DT, USING THE COURANT-F-L CONDITION:
ENX=X0/RD
UMAX=2, $ENX
CY=UMAX+1, /EMD
CR=1.+1./E40
DTXX=CFL#DX/CX
DREF=DRR (JRn1)
DTRR=CFLeDREF/CR
DT=AMIN1 (DTXX, DTRR)
C—BR VERSION, MACCORMACK INTEBRATION OF COLDFLD . 12/5/83
C.....FOR SDATAL. NONUNIFORM DR-MESH., NOTE: DRR(J)=INPUT VECTOR.
Sung,
D0 1 J=1, Rl
1 SUM=5UM+DRR(J)
RR(1)=0,
DO 2 J=2, JRmi
1=J-1
DRR(I)=DRR(1) /SUM
RR(J)=RR{1)+DRR{I}
R3t=(DRR(1)+DRR1J} I#ARIJ) /2
2 R2{1)=RR(J}#e2-RR{I) 422
RR(JRR)=RR (JRM1)+DRR (JRM1)
R2 (JRR)=RR(JRR) #42-RR (JRM1 ) 42
RRS=(RR(JRR} -RR(JRR-2} ) /DRR (JRM1)
RSM1=RRS~1.
C———{NIFORM X-MESH:
Qe =
D0 3 K=2,KXX
3 XX{K)y=(K~1)#DX
{--——INITIAL DATA—PRIMITIVE VARIABLES FIRST:DENSITY, RAD.VEL,
C AXIAL VEL., PRESSURE. FROM CULICK'S (1366) ANALYSIS.
Pl=4, sATAN(1.)
PIT=P1/2.
VR(1)=@,
VXil)=g,
DO 4 J=2,JRR
ARG=PIT#RR{J) #42
VR(J)=-SIN{RRB) /RR(J)
4 VX{1)=COS{ARG)
VX{JRR)=0.
D0 5 K=1,KxX
ARG=FT#XX (K)
ARGZ=ARG*#2
ARG3=1. / (1. +(1. +ARGC) #GAM3T)
ARG3=1. -GAM3T# (1, +ARGR)
D0 5 J=1,JRR
vIC(t, J,K)=1.
VIC(g,J,K)=VRI )
VIC(3,J,K)=VX (]) #ARE
5 VIC(4,J,K)=ARG3

Continued

...................................
......................................................
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~-—TEMPORARY INPUT: THE WALL ENTHALPIES,AT X=@, HWD. AT R=1,HWP
D=1,
HP=H
C-——AT X=9, THE RADIAL VELOCITY=9:
DO 51 J=2, JRmi
St VIC(2, J, 1)=0.
C-——THE INITIAL DATA—ACTUAL DEPENDENT VARIABLES:
00 6 J=t,JRR
D0 6 K=1,KXk
RHO=VIC(1, J, K)
WB (1, J,K)=RHO
UB(2, J, K)=RHOWVIC (2, 340
UB{3,J, K) =RHOSVIC (3,J,K)
6 UB(4,J,K)=VIC (4, 1,K)
D0 7 J=1, JAR
00 7 K=1,KXX
D0 7 M1, KX
7 UM, J,K)=UB (N, J, K)
C......NOTE: THE FOREGOING INCLUDES THE BOUNDARY DATA. ALL OF THE
C  ABOVE SOLUTIONS SATISFY THE INITIAL SET OF BCS.
WRITE (6, 1099) RSTAR, RD, XSTAR, XD, VZERD, VO, PSTAR, PO -
TSCALE=RSTAR/VIERD
WRITE (6, 1805) RHOB, SSND, TSTAR, RUJ, WBAR, HSTAR, CP,
+ RED, IPRNT1, PRN, ITWAX, EMO, TSCALE, BAMA, RSTAR, CFL, DREF, DX, DT
1008 FORMAT(1H1,BX, ' MOTOR RADIUS(M)=",FS. 2, 10X, RO (DIMENSIONLESS)="
+ ,F5.2/9%, "MOTOR LENGTH(N=* (F5. 2, 12X, 10 (DIMENSIONLESS)=* , FS. 2/
N e+ ,9"INJECTION VELOCITY(N/SEC)=",F5.2," VOIDIMENSIONLESS)=",F5.2
% ,/9X,"BAS PRESSURE (N/M#s2) =", 1PE9. 2, 3, * PO(DINENSIONLESS) =",
# 0PF5.2)
1025  FORMAT(9X,"6AS DENSITY(KG/M#43)=",F6, 3/
9%, 'SPEED OF SOUND{M/SEC)=" , 1PES. 2/
9%, TSTAR=" , @PFT. 3, /,9X, ' RUJ="  F6. 3, /, 9%, :
YWBAR=" ,F6. 3, /, 9X, "WSTAR=", 1PE9.2, /, 9X, -
1CP=", 1P€9.2, /,
9K, ' REQ=", 1PE9. 2, BX, " PRINTOUT EACH=", 15, TIMESTEMS!
+,/3%, ' PAN=", 0PF6. 3, 11X, TOTAL RUN DURATION=', IS, ® TIKESTEPS'
#, /9%, EM0=" , 1PE9. 2, B, TSCALE (SEC) =" , 1P, 2
+,/9%," GAMA=' , 0P, 3, 18X, " XSCALE (M) =", 1PE9. 2
%, /9%, " CFL=" , 0PF6. 3/9X, * DREF=" , F7.4/9X, * DX=", F7. 4/91,  DT=", 1PE9,
¢ 2,010
DIFFPR=, TRLE.
TINE=8.
L=
CALL PRINTZ(TIME,L)
DIFFPR=, FALSE.
RETURN
END

w ok e o e

following the printout of the constant parameters at the last
section of Subroutine SDATA, subroutine PRINT is called to dump
the initial profileas, in the form of X-maps and R-maps.




GRS DENSITY (KG/Me#3)= 2,423

SPEED OF SOUND(M/SEC)= 3. 40E+8R

TSTAR=276. 808

= 8.314

WBAR= @, 828

WSTAR= 2, B9E+85

CP= 1.04E+03

REO= 1.21E+04 PRINTOUT EACH= 208 TIMESTEPS
PRN= 8,626 TOTAL RUN DURATION= 1201TIMESTEPS
thi= 2. 946-83 TSCALE (SEC)= 5. deE-%

GAMR= 1, 400 XSCALE (M) = S. 00E-02

Crl= 8.5%

DREF= 0. %30

Dx= 1, 0009

DT= 7.33%-86

....................
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\d
b 3.6 PRINTOUT
E 3.6.1 Input Data and Parameters Calculated in 'SDADA'
&‘ C——W0S005 QUTPUT FILE/3. 25, 1984—
MOTOR RADIUS(M)= Q.85 RO(DIMENSIONLESS) = 1,80
MOTOR LENGTH(M)= 9,55 X0 (DIMENSIONLESS) =11, 8@
INJECTION VELOCITY(M/SEC)= 1.88 VO(DIMENSIONLESS)= 1.8
GRS PRESSURE (N/Me42)= 2, @E+BS  PO(DIMENSIONLESS)= 1.8

.......................

...........................................
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TIE =

-

TIESTEP NO. = @

X-#AP, AT DISTINCT RADIAL POSITIONS

RHO = DIN.LESS DENSITY

. /3

i 0.0
1,000
2. 000
3.008
4.000
5. 00

{‘ 6. 000
7.000
8. 002
9. %00
10. 000
11. 000

/!
X

1.900

X
() 3.000
4, 000

5. 000

6. 800

7.000

8. 899
o 9, 900
1. 800

11,008

Y

X1= 0.8

1. 0908E +80
1. 0998t +80
1. 0000c +82
1. 0000t +00
1. 0000E+09
1. 000RE +00
W
1. 0ORE+20
1. O000E +00
1. 000RE+00
1. O000E +89
1. 0000E +00

1= 0.0
.0
0.0
8.0
0.0
0.0
8.0
8.0
0.9
8.8
8.0
0.0
0.0

1= 0.2000 XI= 0.5500 XI= 0, 5o
1.0000E+00 1.0000E+00 1.0000E+0
1.0000E+00 1. 00Q0E+08 1. BO0AE+0Q
1.0000E+0 1.0000E+00 1.0000+00
1.0000E+00 1, 0000C+00 1. O0OBE+0
1.0000c+00 1.0000E+00 1. BOGRE+H0
1.0000:+00 1. 0000E+D0 1. DMOOE D
1.00006+00 1.0008E+08 1. BAVOE+H
1.0000E+00 1. DOSRE+00 1. DOMOE+00
1.0000E+00 1.0000E+88 1. 0000 +00
1.0008E+08 1. 0000C+00 1. BMOE+RD
1.0000E+08 1.0000C+00 1. 00R0C+D0
1.0002C+00 1. 0002E+20 1. DOE+0R

VR = DIM.LESS RADIAL VELOCITY

K= 3.2000 XI= 8.5500 XI= 0.8000
6.0 e.e 8.0

-3. 1395601 -8, 3179E-01 -1.0554E+00
-3.13956-81 -B. 317991 -1.0554E+00
-3, 139581 -8.317%-01 -1.8554E+00
-3. 1395681 -8.3179E-91 -1.0554E+00
-3. 1395691 -8.3179%-81 -1,0504E+00
-3.1395€-81 -B.3179E-81 -1, @554E+00
-3.139%-81 -8.3179%-01 -1.8554E+8¢
-3,1395€-0! -8.3179€-81 -1.0554E+00
-3, 1395681 -8.3179%-01 -1.8504E+0@
-3, 1395E-01 -8,3179E-01 -1.@554E+00
-3.13956-81 -8,317%-01 -1.0554E+08

VX = DIM, LESS AXIAL VELOCITY

i

..............

Xi= 8.@
8.9

3, 1416E+00
6. 2832E +00
9. A24BEHI0
1. 2066E+21
1. 57086401
1. B850E+81
2. 1991E+91
2.5133E+01
2. B274E+01
3. 1416E+81
3. AT58E+01

XK1= 8.2000 XI= 0.5500 XI= 0,86
8.0 .0 8.0

3.1354E+00 2.7936E+00 1.6833E+Q
6.2708E+00 5.5B71E+0 3.366TE+H0
9.4062E+00 8. 3807E+20 5. 0501E+0Q
1.2542E481 1. 1174E+81 6. T334E+00
1.56TIE+8] 1.3968E481 B, 4168E+M
1.8812E+01 1.6761E+D1 1.0100E+0]
2. 19486401 1,959556401 1. 1783E+8!
2.5083£+01 2.2348E+81 1,34BTE+R!
2.8219E+81 2.5142E401 1.5150E40)
3. 1354E401 2.7936E+81 1.6833E+8!
3,MA89E401 3.0729E481 1.8517E+0!

X1= 0.%
1. 0000 +08
1, 0300E+02
1, GOBIE +00
1. G300E+80
1, 0002 +00
1. 03OE+00
1. 0009E+00
1. 0O00E+00
1. 0000 +00
1. OB0OE+Q
1. DOO0E +20
1. O30E+3

1= 0. %00

8.0
-1.0338E+00
-1.8338E+90
-1, 0338E+89
-1.0338E+00
-1, 0330E+00
-1, 0338E+82
-1, 83386 +00
-1.0338E+08
-1, 0338E+2
-1, 8338E+00
-1,8338E+80

X1= 2. %00
8.9

3.8391E-81
7.71B3E-81
1. 157Te+00
1. 5437c+00
1.929%E+M
2. 1556480
2. TL4E+0R
3.0873E+00
3. 4732E+00
3.8591E+00
A, 2AS0E+0

1= @.998
1. 03003c 108
1. 200BE+38
1. 0BBRE 00
1. S3E+82
1. 00002 +00
1. O000E+0
1. 00+
1. OMOE+R2
1. GOORE+00
1. oM+
1, 0B0RE +00
1. G00E+02

1= 08,9950

8.0
-1, 0049E+00
-1, OOASE+0D
-1, BR43E +89
-1. 0043E+00
-1, 0496 +00
-1, BR49E+00
-1, 0343E+80
-1, 0049E+08
-1, 0B49E+00
-1, 0949E+00
-1, 0B45E+00

1= 8,995
0.9

4.9227E-8¢
9. BASAE-02
1. 4T68E-01
1.9691E-01
2. 4614E-8]
2. 9536E-01
3. 445981
3.9382¢-01
4, 43BAE-01
4, 9227E-01
5. 4150E-01

Continued
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P = DIN.LESS STATIC PRESSURE

Yl Xi= .8 k1= 8.2000 XI= 0.5509 XI= 0,008 XI= 8.9%00 XI= 0.9950
6.0 5.993%-81 9.999%-8! 9.999%-€! 9.999%-6! 9.999%-81 9.999%-0!
1,000 9.9993E-81 9.9993¢-@1 9.9993E-0! 9.9993k-01 9.9993%E-81 9.999%-91
2.0 9.9975c-81 9.9975€-81 9.9975€-81 9.9975€-81 9.99756-81 9.99756-0!
3.000 9.9946E-81 9.9946E-01 9.9346E-01 9.9946E-O! 9.9946E-81 9.9946E-01
4.000 9.9904E-81 9.99B4E-01 9.9984E-01 9.9984E-01 9.9904E-81 9.9904E-0!
S.000 9,9858E-81 9.9850€-81 9.9800E-91 9.9850E-01 9.9650E-81 9.9850E-01
6.000 9.9784E-81 O9.9764E-81 9.9764E-01 9.9784E-81 G.97B4E-81 9.9784E-0!
7.008 9.9706E-01 9.9706E-81 9.9706E-01 9.9706E-81 9.9706E-81 9.9706E-0!
8.080 9.9617c-01 9.9617E-8! 9.9617c-81 9.9%I7E-81 9.9617E-01 9.9617E-0!
9.800 9.9515E-91 9.95156-01 9.9515E-01 9.9515-81 9.9513€-81 9.9515€-01
10.000 9.9482E-91 9.94826-61 9.9482E-01 9.9482£-81 9, 940£-81 9,9402£-8!
11,000 9.976E-81 9.%C76E-8! 9.9276E-91 9.9276E-01 9.%THE-0! 9.9276E-01

R-MAP, AT DISTINCT AXIAL POSITIONS

RHO = DIM LESS DENSITY

YI XI=0.8  XI=2.0000 XI= 4.0000 XI= C.000 XI= 8.0000 XI=18.0000
0.0 1.0000E+00 1.0000C+00 1.0000C+00 1.0000C+00 1.000OE+00 1. 0GOOE+00
6.850 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000c+00 1. 0300E+DR
0.200 1.0000c+00 1.0002E+00 1.0000E+30 1.0000c+00 1.0000C+00 1.0000E+00
0.400 1.0000E+0 1.0000E+00 1.0000C+00 1.0000E+08 1.0000E+08 1. BOOOE+0
0.550 1.0000€+00 1.0000C+30 1.0000C+00 1.0000C+00 1.0000E+00 1.0000C+00

— 0.700 1.0000E+00 1.0000E+00 1.0000C+00 1.0000E+08 1.0000E+00 1. BUARE+R
‘. 0.000 1.0000c+00 1.0000C+00 1.0000E+00 1.0000C+00 1.0000c+00 1.0000C+00
$.980 1.0000E+00 1.0000c+00 1.0000E+00 1.0000E+D0 1. 0000E+00 1. BB0RE+BR
0.950 1.0000c+00 1.0000C+00 1.0000C+00 1.0000E+00 1.0000E+00 1. GOMOE+00
0.965 1.0000E+00 1.0000C+00 1.0000E+00 1.0000E+0Q 1.0000E+00 1. GOARE+DR
0.990 1.00006+00 1.0000C+00 1.0000c+00 1.0000E+B0 1.00MOE+00 1. 0000E+00
1,000 1.0000E+00 1.0000E+00 1.00Q0E+00 1.0000E+D2 1.0800E+00 1. QVMVE+DR

VR = DIM.LESS RADIAL VELOCITY
Yl X1=0.80  XI=2.000 XI= 40000 XI= 6.0000 XI= 8.000 XI=10.0009

.0 0.0 0.0 0.0 0.9 0.9 0.9

0.050 0.0 ~7.853%-82 -7,853% 82 -7.8539E-02 -7.853%-82 -7.853%-02 O
0.200 0.9 -3.1395€-01 -3.13956-81 -3.13956-81 -3.1395E-91 -3.13956-01 1
0.400 0.9 6. 21726-01 -6.21726-01 -6.21726-81 -6, 2172E-81 -6, 2172E-01 !
0.550 o.0 -8, 317981 -B.3179%-01 -8.3179%-81 -B.3179%-9! -8, 3179E-01

.70 0.9 -9, 9416E-01 -9.9416E-81 -9,9416E-01 -9.9416E-01 -9.9416E-01

0.800 0.0 -1, 05545408 -1, OSSAE+0 -1, BSS4E+B0 -1, 8554E+00 -1, BSSAE+00

6.90 0.0 -1, 06206 +00 -1, 06206+00 -1, 0620€+00 -1, 0620C+00 -1. 0620 +00

0.9%9 0.9 -1,03386+00 -1, 03386+00 ~1.0336E+00 -1.03386+00 -1, 0338E+00

0.95 0.0 -1, 00496400 -1, 00AIE+00 -1, 004 +00 -1, 0BAIE+00 -1, BPAIE+00

0.95 8.9 -1, 0141E+90 -1, B141E+00 -1, 0141E+00 -1.0141E+00 -1,0141E+00 L
1,000 -1,0000E+20 -1.0000C+00 -1, 0000 +00 -1.0000E+0 -1, DAAAE+BY -1. 0OGE+H0 i

Continued
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VX = DIM.LESS AXIAL VELOCITY
YI Xi= 0.0 X1= 2.0000 XI= 4.0000 XI= 6.0000 X1= 0.0000 XI=10.0400

.o 0.0 6.28326+00 1.2566E+D1 1.B858E+d1 2.5133E+491 3.1416E+01
.650 0.0 6.2831E+00 1.2066E+91 1.8849E+01 2.5133E+01 3.1416E+01
.2 0.0 6.2708E+00 1,25426+01 1.B812E+01 2,5083E+81 3. 1354E+01
.40 0.0 6.0858E+00 1.2172E401 1,B25TE+D1 2.4343E+01 3.042%+01
.55 0.0 S.5871E400 1. 1174E481 1.6761E+91 2.234BE+B1 2,7936E+81
.70 0.0 A 51216400 9.0242E+00 1,3536E+91 1.BOABE+R] 2.2061E+01
0.500 0.0 3.3667E+00 6.T334E+00 1.0100E+8]1 1,34676+0] 1.6B833E+01
0.9 0.9 1.BATSE+0 3.6950€+00 5.5ACE+00 7.3901E+00 9.2376E+00
0.9%0 0.0 T.7183E91  1.5437E+00 2.3155E+00 3.8873t+30 3.8391E+0
8.985 0.0 2.9377E-01 5.8753t-@1 8.8130€-01 1.1751E+08 1.4686E+00
0.9 0.8 9.B454E-02 1.9691E-81 2,9536E-8! 3.9382E-81 4.9227E-01
1.000 0.0 0.9 6.8 6.0 8.9 e.e

P = DIM.LESS SYATIC PRESSURE
Y 1= 0.0 1= 2.0000 XI= 4.0002 XI= 6.0000 XI= 8.8000 XI=10.0002
8.0 9.999%-8! 9.9975E-81 9.9904E-8! 9.97BAE-01 9.9617E-81 9.948E-01
@.850 9.9999%-91 9.9975E-81 9.9904E-81 9.97BAE-01 9.%17E-81 9. 9482E-01
€.200 9.9999%E-01 9.9975E-01 9.9984E-81 9.9784E-81 9.9617E-81 9.9402E-8!
0.400 9.9999E-81 9,9973E-01 9.9904E-01 9.97B4E-01 9.9617E-81 9.9402E-8!
0.550 9.999%-81 9.9975E-81 9.9984E-91 9.97B4E-8! 9.9617E-81 9.9402£-8)
0.700 9.9999%€-81 9.997E-81 9.994E-8! 9.9784E-01 9.9617E-01 9.94E-01
0.808 9.999%-81 9.9975E-81 9.9904E-81 9.978AE-81 9.9617E-01 9.3482£-81
$.90¢ 9.999%-01 9.9975E-01 9.9984E-01 9.9784E-01 9.9017E-81 9.9McE-8I
\e 0.960 9.999%-91 9.9975E-91 9.9904E-81 9.9784E-81 9.9617E-81 9.94dE-81
0.985 9.9993E-01 O9.99756-01 9.9R4E01 9.97B4E-01 9.9617E-81 9. 948E-01
8.995 9.999%-91 9.9975E-81 9.9984E-81 9.9784E-01 9.9617E-81 9. 94dcE-0l
1,000 9,9999E-81 9,9975E-81 9.9904E-@1 9.9784E-01 9.9617E-01 9. 94e2t-01

INTERMEDIATE STEPS PRINTOUT FOLLOWS . . .

(FOR n < ITMAX)
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3.6.3 Final Step Printout, Datum Case_(Step No. 1201)

TINE = 8. 7T98IE-3 TIEST ... 128!

X9, AT DISTINCT RADIAL POSITIONS

R0 = DIK LESS DENSITY

Yl X1=e.e K= 0,200 XI= 9.550¢ XI= 0.8e0¢ XI= 0.%% XI= 0.99%
0.0  9.B8137E-@! 9.BI33E-Q1 9.BI13kE-9! 9.B13uE-81 9.B1B1E-01 9.8198E-0!
1,000 9.8650E-9! 9.B651E-B! 9.B655t-0! 9.8654%-8! 9.8084E-0: 9.8463t-8:
2.008 9.8653E-01 9.8653t-81 9.B667E-81 9,866LE-01 9.8689E-€1 9.B4blE-0Q.
3800 9.8653t-0! 9.805¢E-91 9.8657E-81 9.BubeE-d. 9.8087E-81 9.843/E-8)
4,000 9.8656E-8! 9.B652E-9! 9.8660E-91 9.BobLE-@: 9.8676E-81 9.8385E-01
5.008 9.8658E-9! 9.8b53t-9! 9.Bobct-8: 9.8063t-01 9.BoE-0. 9.8373t-01
5.080 9.8656E-81 9.8653E-01 9.B6GOE-9. 9.86E3E-81 9.B6IGE-RL 9.B336E-0)
7.00¢ 9,8658E-91 9.B653t-01 9.86b2t-81 9.B8u7eE-@: 9.8073E-8. 9.B23-E-0:
8.800 9.B65HE-91 9.8654E-81 9.B6E-81 9.867¢E-. 9.870IE-91 9.bRIBE-D)
9.000 9.86606-0. 9.8659E-0! 9.8668E-8: 9.867%-0. 9.8717E-01 9.B1E5E-01
10.000 9.8665E-B1 9.B66%-01 9.8676E-81 9.8686E-9: 9.8717E-0. 9.6077e-0i
11.000 9.8671E-@1 9.86BdE-01 9.868%-01 9.8693E-8. 9.8/17E-81 9.7983:-8!

VR = DIM.LESS RADIAL VELOCITY
Yl 1= 0.0 (1= 8.2000 XI= 0.550¢ XI= 0.848¢ X1= @.9%0¢ XI= .95

‘ o .9 o0 8.0 8.0 0.2 8.9 8.¢
1.000 8.9 -2,4673E-01 -9.7828E-01 -1.1914E+00 -9, Q368E-0. -1, M3uE+BQ
c.00 0.9 -2, 4820601 -9.7119E-81 -1.1660E+00 -1.827HE+6C -1. Q1BBE+R¢
3000 0.0 -2, 4336E-01 -9.72526-01 -1.1697E+0¢ -9.6IFAE-0. -1, 01 3oE+00
4,000 0.0 -2. 44B7E-8]1 -9.6781E-01 -1.16E1E+60 -1.@D51E+ER -1, 0237E+00
S5.000 0.9 -2, 4837681 -9.TQ14E-81 -1, 1736E+00 -1, 8c31E+8¢ -1, R1TIE+QQ
6.000 0.0 -2.533%-01 -9.7088E-9! -1.1627E+09 -1.011BE+E2 -1, P12E+DY
T.000 0.0 -2, A240E-0] -9, 7718E-0! -1.1691E+08 ~1,0146E+80 -1, 02R0E+BY
8.0 0.0 -2.5518E-01 -9, BA3%E-0! -1.1633E+80 -1,8@5TE+0Q -1.0163E+02
9.000 0.0 ~2. 4381E-01 -9.7789E-1 -1, 1697E+00 -9, 4666E-0. -1, 01 +RQ
10.008 0.9 -2.5297E-81 -9.6483E-9! -1.1675E+80 -1.0771E+02 -1, 03000+
11.008 0.9 -2,6213E-01 -9.50176-81 -1.1653c+02 -1, 2076c+08 -1, Q4B1E+0¢
VX = DIM.LESS RXIAL VELOCITY -]
YI Xi= 0.9 X1= 0.2000 XI= 0.5500 XI= 2.B6¢ XI= 6.%M XI= @950 R
e 00 6.0 0.8 8.0 8.0 8.2

1,000 3.1669E+00 3.1613E+00 2.B10CE+00 1.693E+M0 3.B/1BE-d1 3.97S1E-B
2000 6.2329E+00 6.2794E+00 5.5040E+00 3.3570C+02 7.57BOE-R1 B,B714E-02
3.000 O.MA58E+00 9.A236E00 B, 3US6E0D 5.G307TE+R0 1, 1SACEBQ 1. 4oE-QI
4000 1.25TAESD! 1.25A7E+01 1.11G1E4D1 6.7178E+400 1,522BE+00 1.6374E-01
S.000 1.5TI6EsQ 1.56826+01 1.3951E+01 B,3JC6E+00 1, PBVE+RY 2. 351801 T
6.000 1,B84SE+01 1.830SE+B1 1,673E+01 1.00TSEHR1 2.2930EHR 2,B389E-0! c ]
7.000 2.198TE+@1 2.1930E+01 1,95196401 1.1752E+01 2.6715E+00 3.2u44-01 -]
8.000 2.51156+01 2.505TE+D1 2.2291E+01 1.3417E+01 3.Q407E+00 3.6721E-01

9,000 2.8243E+01 2.BIBIEHO1 2.5073E+1 1,5086C+01 3, AI0EBY 4,801

10.000 3.1348E+01 3.1274E491 2.7820E491 1.6717E+@1 3,7468E40 4, 212BE-01

11,008 3.MASCE01 3.A367E+B1 3.@566E4Q1 1.B3ASEeD1 4, Q6364 4, 3955:-0 Continued
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P = DIM LESS STATIC PRESSURE

YI Xi= 0.9 k1= 0.208¢ XI= 8,508¢ XI= 0.660
8.8  9.8137E-01 9.B133-01 9.8133-01 9.813E-01
1,088 9.8125€-8! 9.8123t-61 9.8124E-01 9.B13t-0!
2.000 9.8114E-91 9.8113t-81 9.8124E-81 9.8124%-0!
3.00¢ 9.8085E-01 9.8083t-8! 9.B886E-81 9.889cE-0!
4,800 9.8B47E-0! 9.8044E-01 O.B8852€-91 9.8@5%E-0l
5.000 9.7998E-8! 9.7995E-@! 9.8002E-0: 9.8003E-0!
6.800 9.7935€-9! 9.7934E-01 9,7934E-81 9.7944E-01
7.000 9.7BG6E-O! 9.7B6IE-B! 9.7870E-01 9.7875-01
8.808 9,7782€-01 9.7788E-81 9.T787E-81 9.T791E-8!
9.000 9.7693E-81 9.7693E-81 9.7702£-01 9.TI04E-01
10.900 9.7396E-81 9.T39%E-81 9.76@3E-81 9. 76e7E-0!
15980 9,749%-01 9.750%&-0! 9.7387E-01 9.Tole-0l

DIFFERENCES BETWEEN CURRENT TIMECTEP NO. 129t
AND THE INITIAL DATA UM, J,K)-UINITIRL (M, J,K) :

X-#P, AT DISTINCT RADIAL POSITIONS

k= 0.%M XI= 0.945¢
9.B1B1E-01 9.61%E-0!
9.6172E-81  9.8195E-01
9.8164E-21 9.8183E-01
9.8133E-01 9.8153E-Q1
9.8074E-81 9. BRY4E-01
9.8847E-01 9, BO7LE-R!
9.793cE-0. 9. b825E-01
9, 7686E-01 9. Tu36E-B]
9.7641€-81 9.7877E-0)
9.7767E-01 9. Tuiec-81
9.7e39E-81  9.7693E-01
9. 755801 9. 75TE-01

RHO = DIM,LESS DENSITY
Yl Xi= 0.9 1= 06,2808 X1= 8.5580 XI= 0.800¢
0.8 -1.8634E-82 -1.8672E-82 -1.B6756-02 -1.BRATE-
1,800 -1, 3435602 -1. 3494E-02 -1, 3M4TE-0 -1, 3M1Rc-W2
2.088 -1, 3A74E-82 -1. 3A6BE-02 -1.3333€-8 -1.3337E-8C
3.080 -1, 3ABBE-0C -1, 3AB3E-2 -1, 3430E-&¢ -1.337%-8
4,008 -1, 342482 -1, 3ABCE-B2 -1, 3354E-02 -1.3339%E-82
5. 008 -1, 3A16E-82 -1, 3472E-082 -1, 337TE-& -1, 3366E-02
6.000 -1.3436E-82 -1, 346%E-02 -1. 34Q4E-BR -1,3372E-02
7.000 -1, 3423602 -1, 3ATIE-0Q -1.33B1E-02 -1, 33M4E-B
B.000 -1.3425E-02 -1, 3462E-0C -1.336BE-02 -1. 3303E-82
9.000 -1, 482E-02 -1, 34128-0¢ -1. 332160 -1, XKeE-I
10,000 -1.3346E-02 -1.3306E-82 -1. 321369 -1. 3143692
11.008 -1, 329168 -1, 3C81E-2 -1.3116E-82 -1, 3873E-02

VR = DIM.LESS RADIAL VELOCITY
Yi X1= 0.9 X1= 0.2000 X1= 0,550 XiI= 0.B800

8.8 o0 8.0 8.0 8.0

1,000 0.9 6. 7218E-82 -1.4649E-01 -1, 359301
.00 0.0 6. 5TABE-02 -1.3940E-2! -1, 1856E-8!
J.eee 0.0 7.8391E-82 -1. 4072E-81 -1, 1428E-0)
LR 0.0 b.98B3E-82 -1. 3522681 -1. 1865E-0!
.0 0.0 6.5582E-82 -1.3635E-01 -1.20A4E-0!
5.008 0.9 6. 8562602 -1.3WIE-81 -1.8731E-0l
7.000 0.9 T. 1472E-82 -1.453%-81 -1,136%-0t
8.000 0.0 5. BTT4E-B2 -1, bOE0E-B! -1, 8994E-0!
9.000 0.0 7. 014AE-82 -1.4610€-01 -1.1433-01
10.008 4.0 6.8981E-02 -1.3224E-81 -1, 1214E-9)
11.008 0.0 5. 1620E-82 -1.1838E-01 -1.@I94E-01

A= 0. %08 XI= @.9750
-1.8193E-02 -1.88C1E-&
-1, 31656-82 -1.53711E-Q¢
-1. 3186E-02 -1.5385E-8¢
-1, 31290 -1, 5633E-&¢
-1, 323YE-02 -1.6114E-0¢
-1, 3103E-0C -1, b2boE-02
-1. 3006E-02 -1, bb44E-82
-1, 3¢73E-82 -1.7637E-0B2
-1.2994£-02 -1.7821E-82
-1,2627E-8¢ -1.68343k-82
-1,2828E-02 -1, 9231E-82
-1, ZB30E-8¢ -2, @114E-8¢

1= 0, %80 XI= 0.9950
8.0 8.9

1.29WE-@1  1.27B9E-03
6.8118£-03 -1, 3935¢-w2
6. 3u34E-8 -8, BHSZE-83
-2, 1396E-82 -1, B764E-8C
1.0669E-82 -1. Se@5E-82
2. 1954E-02 -1. 4344E-02
1. 9144E-O¢ -1.5697E-0¢
2.B033e-02 -1.3985E-%
8.7116E-8¢ -7.9878E-063
-h, 3362£-82 -2. 5578E-8
-1, 73B4E-01 -4, 3c0ct-0¢

..........

vvvvvvv
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VX = DIM.LESS AXIAL VELOCITY ]
YI Xi= 9.9 {1= 0.2000 XI= 8.5500 XiI= 8.800¢ XI= 0.%%0 XI= @, 9950
e.e o 6.0 6.9 8.0 8.0 8.9
1,000 B.MAB%E-03 B.2381E-03 5.296%-03 3.1428E-03 4, B304E-04 -3.0163€-03
2.000 1.5430€-93 1,3724E-83 -3,5836E-04 -1.5O0YE-93 -2.2320E-03 -1.550CE-03
3000 2.23206-03 1.8676E-03 5.21126-84 7.234%-85 -3.7106E-84 -6, 2405667
4,000 5.4227E-84 3.9873E-94 -1.0R218E-93 -1, 2396E-83 -1.6092E-83 -1.8483E-83
5.000 5.2h26E-04 2.9845E-04 -1.8330603 -~1.5270-83 -1.3711E-03 -7.0257E-04
6.000 -2. 3314E-04 ~3.7075E-04 -1.533E-03 ~1.3195E-83 -1.1918E-03 -5, BBATE-04
7.000 -2, 0955E-94 -4, 3089E-84 ~1.6521E~03 ~1.418BE-03 -1, JMZE-83 -7, 3A55E-04
B.000 -7.1641E-84 -1.0376E-03 -2.2949E~03 -1.9693E-83 -1.B53E-93 -1.@5686E-03
9,000 -1.9928E-03 -1. IS6TE-03 -2, A447E-B3 ~2.2133E-03 -2.2342E-03 -1.41656-03
10,800 -2. 1643693 -2.5446E-03 -3.6875€~83 ~3. 7e15E~83 -3, 5760E-03 -2, 25YBE-83
11,000 -3.8511E-93 -3.35359E-03 -4, 72106-83 -4, 9626E-83 -4,6739E-03 -2. 9483E-03

P = DIM.LESS STATIC PRESSURE

Y XI= 0.0 11= 0.2008 1I= 0.550% XI= 0.800¢ XI= 0.%0 XI= 0,99
6. 9.0 4.2251E-03 4,5995E-83 1.4373E-03 ~4.9407E-0C -6, BETRE-OZ
1.000 1.250CE-02 1.51@3E-0¢ 9.1191E-03 4. 94Q4E~83 -3,9895€~0¢ -6. 36B84E-0C -
2.000 2,5021€-02 2,603BE-0¢ 1.3679E-8c B.4973E-83 -3.0366E-82 -5. bESGE-02
3.000 5.7T98%-02 6.BABGE-02 5.A590E-02 4.9919E-8¢ 3.8641E-83 -2.0ATIE~02
4,000 1.0046E-01 1.8394E-01 9.4486E-82 B.68206~02 £.6187€~82 4, B334E-82
5.000 1,5614E-01 1,5882E-0! 1.5077E-01 1.4623t-01 1.61036-8! 6.8129E-8
6.008 2.2692F-81 2.2732E-) 2.234BE-81 2.1650&-81 1.50BE-91 1.2088E-0: L
7.000 3.0426E-91 3.8967E-01 3.M3IE-01 2.9456E-01 2.B17uE-01 2.7967E-01 .
8.802 3.9891E-01 4,0166E-01 3.9403t-81 3.BYSE-0! 3.32676-81 2.9215E-01
9.000 4.9924E-01 4.9971E-01 4.8981E-81 4,873%E-81 4.1575¢-8! 3.6752E-0!
10.000 5.9954E-01 6.0913E-01 ©5.9994E-01 5.9723E-31 §,3840E-81 5.Q0CTE-0!
11,800 7.2007E-01 7.1884E-Q1 7.1836E-01 7.0737¢-81 6.613%-01 6.33ME-O:

SKIN FRICTION(CF) & STANTON NO. (ST)
X oF ST U1(W)/ue(tL) R

1,00 1.6871E-85 -5.2580E-04 -3, 2009E-0! o
2.00 9.B834E-9¢ -2.60626-04 -1.6108E-0; o
3.00 6.6758E-86 -1.6765€-84 1. 8731E-0;
4.00 A, 71136-06 -1. 2481684 -8, 060E-& .
5,00 3.8591E-86 -9, 3ASEES 6. ML N
6.00 3.20106-86 -1. 40605 -5. 37B7E-8¢ '
7.0 2.TSATE-86 -6. 360905 -4, 6101E-8
8.00 2.3604E-85 -5, 046AE-85 -4, BIS9E-02
9.00 2.9482E-06 -4, 23ME45 -3, SBBTE-0°
10.00 1, 730069 -3.733£-05 -3. 233062
11,08 1,5814E-86 -3. 3357605 -2, 9417682

L '.' Y Y

Continued
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R-P, AT DISTINCT AXIAL POSITIONS
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RH0 = DIM.LESS DENSITY

A/
4.0
0.%0
8.208
0. 400
0.558

XI= 2.8

X1= 2.0

9.8137e-81 9.8653t-8!
9.8137E-81  9.8653¢t-01
9.8133t-81 9.8653¢t-0!
9.8111E-81 9,B6A1E-8!
9.8133k-81 9.8667E-81
9.8118E-8! 9.B8664E-01
9.8135E-01 9. 8666E-2!
9.8131E-81 9.8653¢-81
9.8181E-91 9.B868%-91
9.8198E-01 9.8657E-01
9.8198E-01 9. BAGIE-Y
1. 9000E+0 9.8198E-01

VR = DIM.LESS RADIAL VELDCITY

v
e.e
e.e5
.o
0. 400
.55
8.700
.68
.98
9.9%8
9.985
6.995

1= 8.0
6.2
8.0
0.0
8.0
e.¢
8.2
6.0
8.2
8.0
8.0
8¢

1= 2. 0000

e.e
=9, 4916E-8
-2. 4820€-81
-B. 83ATE-D1
-9.711%-81
-1, 1952E +00
-1, 16608E+00
-1, 1461E+00
-1,8276E+08
-1.827E+0
-1.0188E+08

1= 4. 000
9. 8656E-81
9.86568E-01
9. 865¢t -1
9. 8640E-01
9. 8665E-81
9.8655€-81
9. Bob6E-P1
9.8657E-01
9. B6T6E-B!
9.8623t-8!
9. 8384E-81
9. 8834E-81

XI= &, 0000

e.e
-9, AbA8E-82
-2. 4487E-81
-B. 858901
-9.6781E-81
-1, 1947E+00
-1, 1661E+00
~1. 1614E+00
-1.@551E+080
-1, 83436400
-1, 8237EHR

1.000 -1, 0000E+09 -1, B184E+00 -1.0194E+00

VX = DIM,LESS RXIAL VELOCITY

Y1
8.0
e.a5

Xi= 0.0
0.0
8.0
8.9
8.0
8.0
6.9
0.0
0.9
0.8
0.0
9.0
8.0

1= 2,080
6. 2929 +89
6. 2929E+00
£. 2794E+M
6. 0896E+00
5. SB4%E+00
4, 5071E+00
3. 57+
1.8376c+80
1.5780E-01
2, BecbE~91
6.8714E-82
e

1= 4, 00N
1. 2574£481
1. 257AE+RY
1.2547E481
1. 216949}
1. 1161481
9. 0119408
6. 7178E+09
3. 6810E+00
1. 5226¢ +80
5. 6303t -81
1.8374€-81
.l o

kI= 6,000
9. B656E-81
9. 8656E-81
9. B653E-81
9.8641E-81
9. B660E-81
9. 8060E-81
9. 8664E-01
9. 8655E-81
9. 8699E-01
9.8631E-81
9. 8336881
9. Ba3eE-t

X1= 6. 000
8.e

X1= 8. 00¢
9, 8656801
9, 858801
9. BESHE-D3
9. 8634E-01
9. B6bIE-9!
9. B663E-01
9.867eE-0!
9. 8657E-01
9.8781E-@1
9. BoeE-01
9.8216E-01
9. 7878E-01

XI= 8. dude
8.0

=9, Te%E-82 -9.6149€-8¢
-2, 533901 -2.5518E-01
-8,0669€-01 -6, 132001
-9, 7080e-01 -9, BR3%-81
~1.19606+00 -1, 20126 +00
-1, 1627E+00 ~1. 1653E+80

-1, 1378E+00

-1, 13736400

-1.011BE+D0 ~1.POSTE+D
-1, 8176E+00 -1, 8135E+00
-1.D192E+0 ~1.0109E+88
-1.0281E+08 ~1.08217E+88

X1= 6. 00
188456401
1. BB43E+01
1. B4B5E+0L
1. 8240E+0)
1.673£+01
1. 3519491
1. G75E+81
5,579 +09
2. 2930E +82
8.6322t-81
2. 838481
8.0

XI= B.%0¢
2. 91156+
2.5115E+01
2. WO7E+8
2, 4383E+01
2.291E+R1
1. 7997E+21
1. 34176401
7. 3526E+@
3. 0407E+
1, 13526 +82
3.6721£-01
0.9

X2=18. 0vRd
9. 8655E-91
9. 86b3E-01
9. 8669E-01
9. 866001
9. 4678E-01
9, 8679-01
9. 8686E-01
9. 8oBeE-01
9.8717€-01
9. 896301
9.80776-81
9. 7694£-01

k1=10, 0000

8.0
-9.6113E~-82
-2, 5e97E-01
~6. 876501
~9. 6403E-01
-1, 1969E+02
-1.1675E+00
-1, 1T5eE+0
~1.8771E+00
-1, 8450E+00
-1, 8385E+02
-1, 8236E+8¢

X1=10. Gy
3. 1 J48E+21
3. 1340E+01
3. 12748 +0!
3. 033E+01
2. 1820E +81
2. 2453t +9!
1.6717E+01
9. 1419€+00
3. TABBE+00
1. oA1E+00
4. 2128E-9)
8.
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P = DINLESS STATIC PRESSURE
Yl Xl= 0.0 1= 2. 0008 XI= 4,008 XI= 6.0000 XI= B.00¢ 11-10,000¢
0.0 9.8137E-@1 9.BIIAE-B! 9.BOA7TE-1 9.793>E-81 9,7782E-8! 9.759E-01
€050 9.8137E-B1 9.BlL1ME-Q1 9.BMATE-Q1 9.793%6-01 9.7782£-81 9,799%E-%
0.200 9.8133-0] 9.8113E-01 9.0044E-01 9.7934E-01 9.7782E-81 9.75%E-01
400 9.8111E-01 9.8094E-91 9.Bd25E-9! 9.791%k-81 9.7755€-01 9.7u81E-01
6.55¢ 9.8133E-01 9.8124E-01 9.8852£-81 9.793uE-01 9,7787E-8! 9.76056-0!
8.700 9.8118E-91 9.8123t-81 9.BUSIE-d1 9.7930E-81 9.7785-0i 9.759%-0!
.60 9.8135-91 9.812%-91 9.8259%-01 9,7944E-91 9.T791E-8) 9.7607E-9)
0.90¢ 9.8131E-01 9.8109%-01 9.8044E-01 9.7926E-01 9.7768E-91 9.7591E-01
0.960 9.B1B1E-81 9.B16AE-@1 9.BA78E-81 9.799E-D1 9.7841E-01 9.76596-0%
@.985 9.8198E-01 9.8187E~81 9.8093E-81 9.8827E-01 9.7673€-81 9.7691E-01
5.9% 9.8198E-91 9.818%-91 9.809E-91 9.B829E-81 9.7BTIE-0! 9.7693t-0)
1,000 9.999%-01 9.81ME-81 9.8094E-81 9.B823E-91 9,7678E-61 9. ToIE-B)

-«

DIFFERENCES BETWEEN CURRENT TIWESTEP NG, 1201
AD THE INITIAL DATR UM, J, K -UINITIAL (M, J,K) :

R-MP, AT DISTINCT RXIAL POSITIONS

Rr0 = DIN, LESS DENSITY

YI Xi=o.2 K= 29000 X1= 4. 0000 XI= 6.0000 X1= B.0000 X1=10.0000
0.0 -1, BE3AE-82 -1.JATAE-0R -1.3424E-92 -1, 3436E-02 -1, AOSE-8R -1, 3346E-02
0. 902 -1, B63AE-0R -1, ATAE-Q2 -1, JACHE~02 -1, 3A3GE-@R -1, A2SE-02 ~1. 3INGE-R
0.200 -1.8672E-92 -1. 346BE-02 ~1. 34B2E02 -1. 346902 -1, 3062E-02 ~1. 3306E-82
0. 480 -1, BBB7E-02 -1, J5B6E-02 -1, 3598E-02 -1, 3991E-02 -1, 3624E-B2 -1, IA0eE-E2
.55 -1,8673-92 -1,3333E-02 ~1.3354E-82 -1, AME-02 -1, 33bLE-BR -1, 31SE-0C
0.700 -1, 8B16E-02 -1, 3364E-02 -1, ASIE-BR -1, J4Q0E-02 -1, 336TE-8¢ -1, 3¢12E-0R
0.808 -1, B64TE-8C -1, 3337E-02 -1.3339E-02 -1, 337602 -1, 3303E-82 -1, 3143682
0. 900 -1, 8683E-02 -3, ATIE-BR -1, J430E-02 -1. 3A52E-02 -1, IAJNE-B -1, 3199682
0.960 -1 BI93E-82 -1, 310EEQ2 -1, 323982 -1, IDOBE-B2 -1. 29NE-B2 -1, 2BABE-BR
0. 385 -1, 8023E-02 -1, 42BE-02 -1, 37706082 -1.3689E-82 -1, 4Q02E-02 -1, 43126
8,995 -1 802iE-02 -1.5385E-02 -1.6114E-02 -1, 6EAAE-02 -1, 7B21E-82 -1, R3I1E-R
1.080 0.0 ~1.81035-82 -1, REER -1, 9702£-02 -2. 1222682 -2, IEAE-

VR = DIK.LESS RADIAL VELOCITY
Yl 1= ¢.@ K1= 2. 00 XI= 4.0000 XI= 6.0000 XI= B. 000 XI=10,000¢

e 8.0 8.0 6.9 8.0 6.9 8.0

e b ~1.637TE-82 -1.E109E-8 -1.B557E-02 -1. 760982 -1, T573E-8&¢

p.ee 2.2 b.5748E-Bc 6.9083t-82 6.856cE-82 S.B7746-82 6.09B1E-82

8.4¢ 0.0 -1. 8775691 -1.BA16E-01 -1.BA9TE-®) -1.9148E-01 -1,86126-91

0.55¢ o.¢ -1, 3940681 -1, 3522E-0] -1.IR1E-B1 -1,AB60E-B1 -1, 3224E-8)

.7 00 -2 O104E-01 -2, MISIE-01 -2.8382E-0! -2,070£-0] -z.8TIE-D]
9.828 0.0 -1.1856€-01 ~1. 1065E-81 -1,0731E91 -1, @9HE-8] -1, 1214E-0] |
L &2 -8.4158E-82 -9,9361E~02 -7.5685E-02 -7.5351E-82 -1, 131%-91 |
9.%¢ 0.0 6.0i106-03 -2, 135682 2,1954E-92 2,B033E-92 -4, 3362E-92 |
9.9%5 0.9 -8, 572603 -2, 9153602 -3.4389E-03 -1, 4103693 -3.038X 9
8.9 0.0 =1, 39356~82 -1, B7BAE-82 -1, 43ME2 -1, 3985E-92 -2, 5576E-82

LON 0.9 -1, 8436E~02 -1, 943202 -2, MIIBE-2 -2, 1682 -2 -2 3608682

Continued




VX = DIM.LESS AXIAL VELOCITY
YI XI= 8.8 X1= 2. 0008 A1= A.0008 XI= £.0000 XI= B.Qwd¢ X1=10.048¢

8.e @0 1.5A30E-83 6.4c276-84 -2, 3314E-04 -7, 1641E-04 -2. 1643E-03
ek 8.0 1.5586E-03 6. 5801E-04 -2.2004E-04 -7,0652E-84 -¢. 1965C-03
.20 0.0 1.37246-03  3.9873E-94 -3.7075€-04 -1.0376E-03 2. S446E-03
.4 0.9 6. @500E-04 -2, BIDAE-B4 -9, 3336E-84 -1.5852E-03 -3, BUSE-3
8.55 o.@ -3,5836E-94 -1.08218E-83 -1.533¢£-03 -2. 2944E03 -3. 6875603
.7 0.9 -8.8596E-84 -9, B2BE-B4 -9, 3594E-04 -2, B375E-03 -3, 4140E-03
0.000 8.9 =1.5509€-83 -1, 2396E-03 -1, 319503 -1, 9693693 -3, 7215683
8.9% &.0 - =1. 5583603 -1. 1163E-03 -7.7586E-04 -1,49156-03 -3. 4b4E-03
0.%0 0.0 -2, 23006-83 ~1.6592E-83 -1,1910£-03 -1.B33KE-03 -3. 5760E-03
0.95 0.8 -2, 1492693 -1, 47¢5E-83 -9, 5897E-84 -1.5866E-03 -3, 3346E-03
8.99% 0.9 -1, 3582E-83 -1, 8483E-03 -6.8687E-04 -1.@5HBE-83 -2, 2598E-03
1.0 0.9 8.2 8.0 o.e 8.0 8.0

P = DIM.LESS STATIC PRESSURE
YI ¥I=@.8 K= 2.0000 XI= 4.0000 Xi= 6.000¢ XI= 8.000¢ XI=10.D0¢
0.8 -1.8628E-82 -1.B8612E-82 -1.8566E-82 -1.8495E-82 -1.BIAGE-0R -1.B004E-02
0.@59 -1, 8628E-82 -1.0612E-82 -1.B566E-82 -1, B49F 02 -1, 8346E-82 -1, 88D4E-0¢C
0.200 -1.B666E-82 -1.B621E-82 -1.B597E-82 -1.BA9BE-6C -1,B370E-92 -1.BESI1E-8
0.400 -1, 8881E-82 -1.881%-82 -1.8790E-82 -1.670%-02 -1.B8617E-02 -1, BAV4E-02
8.550 -1.866%-8¢ -1.B511E-92 -1,8513E-82 -1. B4BAE-8C -1.B303E-02 -1.7970E-%2
G.780 -1, 8810692 -1.85226-82 ~1. 833282 -1.B496E-8 -1.B317E-8 -1, Bd4t-Ec
@.800 -1,8641E-82 -1.BAESE-82 -1.B8445E-02 -1.B405E-02 -1.8263E-02 -1, 7946E-0c
0,99 -1,8683E-8C ~1.8663c-8¢ -1.B598E-62 -1.8581E-0c -1.B491E-B -1, 610802
8,960 -1.8187e-82 -1,8118E-82 -1, B260E-82 -1.7883E-82 -1, T759E-02 -1, T427E-&
9.965 -1.8017E-02 -1.7882t-82 -1.8188E-8c -1, TOT0E-OC -1, 7421E-8¢ -1, T106E-0C
0.995 -1.8815€-82 -1.7865E-92 -1.B182E-82 -1.7552E-02 -1. T4Q0E-82 -1. T8RBE-B¢
i 1.000 0.9 =1, TB5BE-82 -1. BIMIE-BC -1, TSMAE-B2 -1.7390E-O¢ -1.T0B0E-

END OUTPUT

.......................................... -~
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UNCLASSIFIED

Recently Flandro [15) has carried out a theoretical analysis for a burning
pellant in a cylindrical grain, under the effect of incident acoustic waves,
etailed formulation was derived with a double expansion, in terms of both
erse Reynolds number as well as Mach number (independent small parameters).
onsteady premixed combustion zone was considered near the propellant surface;

assumption is made, however, that flow within the combustion zone is pure
ial, i.e., zero axial component to all ordrs. Thus it could be anticipated

t the results resemble (regarding nonsteady combustion behavior) those of
en [16], and there seems to be only small differences between the response to
igent and to perpendicular wave incidence. The problem is finally solved
rerically, and details of the inner/outer matching process were not given.

In the remainder of this paper, the viscous, injected wall layer
‘mulation is derived, in perturbation form. Analytical near field solutions
» obtained for all variables up to second order, regarding the radial
>rdinate dependence; the remaining (x,t)-dependence is shown to be governed by
latively simple partial differential system, These solutions are discussed,
th particular attention to the resultant (first order) pressure distribution
1 wall shear stress, for which experimental data are available.

ARALYSIS

alvtical Model of the Coreflow

The eguations of motion pertaining to the core~flow simulation are
esented, for an axisymmetric flow field. The objective is to simulate
e cold-flow experiments of Dr. Brown at UTC/CSD, which utilize cylindrical
ometry., For the coreflow region, with typical injection Reynolds numbers of
der 104, we assumed constant and uniform thermophysical properties. A
hematic of the physical configuration is shown in Fig, 1. Turbulence and
mbustion are precluded from the present formu-.ation, for reasons discussed
rlier. Other than these simplifications, the full compressible, nonsteady,
scous egquations of motion are considered, with all the dissipative terms
cluded.

The five ecuations of motion, for continuity, radial momentum, axial
ymentum and energy are presented in differential form. A caloric eguation of
ate (pertaining to perfect gas) completes the model to form closure of the
opendent variables,

The following dimensionless independent variables are introduced, based on
e two physical scales of reference inner chamber radius, R,*, and reference
jection velocity, Vot

rs= r‘/Ro', X = x‘/Ro‘, t =t/ (1)

ere to* = R */v* (2)
i dependent variables are:
BRI AAAA S B VA U (N AV

\d P = p*/P,* (3.

In the last eguations, the proverties used for non-dimensionalization
‘e the reference (injected) density, s+ and the reference chamber pressure,
*; the corresponding thermal enthalpy, h,*, is calculated from the caloric

* Tl % *®
t. = "-%_?o ho (4)

luation of state,
vere (=Cp/Cv is the svecific heat ratio, is considered as constant, The
»ference speed of sound is

» t I/
2, =(%)z-.—. \/(7_0;4; (5)
UNCLASSIFIED
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eing inviscid, could obtain a solution for the axial velocity component which
atisfied the no-slip boundary condition at the wall. The solution which
atisfies the boundary data, namely, u(x=0)=0, u(r=l)=0, and v(r=l)=1, yields:

V=— 51'4'\(12[!'7')/!"
W = Tx s (Ery)

'f the general family of solutions obtainable, only that which allows full
letermination of the vorticity (the azymuthal component alone remains,) by the
vailable boundary data, is physically meaningful; the rest were therefore
ejected. The axial pressure distribution obtained from the momentum equation

s parabolic,
[ f-peod/pls Fx*

‘his tvpe of injected flow field has been investigated previously both
'xperimentally and theoretically. In particular the early theoretical work of
terman [2], who arrived at a power-series solution to the perturbation problem
»f suction in a flat, porous-walled channel, with the suction Reynolds number
lerving as small-perturbation gquantityv, The analytical results of G. Taylor [3)
ind Wageman and Guevara [4) more closely resemble the cosine terms of Culick [1);
»oth [3,4) have carried out experiments as well, and both demonstrated very good
icreement between the measured axial velocity profiles and the calculated ones.
[t appears that Culick {l) has arrived at his results independently, since no
reference was made to any of the previous works. In the experiments by Dunlap,
villoughby and Hermsen [5], the formulation derived by Culick [1] was used to
rorrelate the measured data, again with considerahble success, regarding the
soreflow axial velocity profile, that is, away from the close neighborhood of
the wall.

Other experiments by Olson and Eckert (6] and later by Huesman and Eckert
[7] tend likewise to verify the validity of this formulation, in particular
regardino the radial velocity profile, which indeed exhibits a peak near the
>orous surface (6], as well as the axial pressure distribution (the latter shown
s a linear correltaion between the friction coefficient, Cg¢, and the inverse
nean axial velocity, which are both proportional to 1/x.

The recent (and ongoing) experimental study by Brown, et al [8] provides
valuable information regarding the steady state axial pressure profile and the
axial velocity distribution, as well as nonsteady wall heat transfer (obtained
by exciting the standing acoustic modes in the tube). Departure of the steady
state data from the predictions of the aforementioned formulation by Culick [1)
was attributed to possible transition to turbulence. As will be shown in this
study, the oressure data obtained can be simulated very well with a first-order
»ressure perturbation, arising from the laminar viscous wall-layer analysis,

Earlier, Yagodkin [9] reported an experimental cold flow setup, with an
injected vorous pipe. The maximal injection Reynolds number was 250, which is
2-3 orders of magnitude less than that corresponding to actual internal rocket
flows, Hot-wire anemometry was used to obtain axial velocity and axial velocity
fluctuation vs axial and radial distance. Turbulence intensity seems to peak
near the surface, and decrease toward the centerline and toward the pive wall.
These observations are aualitatively similar to those obtained later by Yamada,
et al [10]. Although a transition region, at R,,=100-150, was speculated [9] to
involve "large eddy structures”, no such evidence appears in the experimental
jJata reported [9].

Further studies by Yagodkin, with Varapaev [11] and Sviridenkov [12] are
theoretical, and address the problem of laminar stability of injected channel
flows, i.e,, transition to turbulence. Thus, modified versions of the Orr-
Sommerfield problem were investigated analytically (11] and numerically [1l2].
Two related laminar flow stabilityv analyses are by Goldshtik, et al [13]) and
Alekseev, et al {14). None of these theoretical analyses indicates the presence
of large turbulent eddy structures prior to a full transition point, neither do
they obtain an origin of such turbulence on the centerline upstream.
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PLUID-DYNAMICALLY COUPLED SOLID PROPELLANT
COMBUSTION INSTABILITY - COLD PLOW SIMULATION*

Dr. Moshe Ben-Reuven
Princeton Combustion Research Laboratories, Inc.
Monmouth Junction, New Jersey

ABSTRACT

This analysis js aimed at the near-wall processes in an injected,
wixisymmetric, viscous flow., It is a part of an overall study of solid
srovellant rocket instability, in which cold flow simylation is evaluated as a
tool to elucidate possible instability-driving mechanisms. One such prominent
nechanism seems to be visco-acoustic coupling, as indicated by earlier detailed
>rder of magnitude analysis. The major component of the overall study, not
reported herein, involves numerical simulation of the full coreflow eguations of
motion (nonsteady, axisymmetric) by a modified MacCormack integration technigue.
The formulation is presented in terms of a singular boundary layer problem, with
Jetail (up to second order) given only to the near-wall region. The injection
Revnolds number is assumed large, and its inverse square root serves as an
approoriate small-perturbation quantity. The injected Mach number is alsoc small,
and taken of the same order as the aforesaid small guantity. The radial-
dependence of the inner solutions up to second order is solved, in polynominal
form. This leaves the (x,t) dependence to much simpler partial differential
rouations. Particular results demonstrate the existence of a first-order
pressure perturbation, which arises due to the dissipative near-wall processes.
This pressure and the associated viscous friction coefficient are shown to agree
very well with experimental injected flow data.

INTRODUCTON

This is part of a study aimed at elucidation of the physical mechanisms
capable of driving acoustic instability in solid propellant motors, particuarly
of the type termed velocity-coupled instability. Previous studies on the
coupling between velocity oscillations and the combustion process in solid
provellant motors have demonstrated the complexity of the overall phenomenon,
but have not yet defined the basic mechanisms nor how they overate under flow
conditions orevailina in rocket chambers. Critical literature review and order
of magnitude analvses of velocity coupling mechanisms have been carried out,
includino visco-acoustic couplina and turbulence combustion coupling. The major
goal of the study is the analytical simulation of the interior flow field within
a8 s0lid propellant arain. The focus is on the Stokes layer, with the objective
of investigating the particular instability mechanism of visco-acoustic
coupling., Preliminary analysis has indicated that this mechanism is both
plausible and sufficiently powerful to drive nonlinear vibrations; it has been
shown that the frecuvency-dependent surface heat feedback component, due to
viscous/acoustic coupling, has both phase amplitude ranges which would enable
driving of acoustic vibrations; its amplitude tends to increase as the mean
coreflow Mach number and the freguency become higher. A comprehensive
analytical model of the flow field within the viscous wall layer region has been
derived, for an axisvmmetric, nonsteady flow field configuration. For a
simulation of the cold flow test results gnerated at UTC/CSD, four conservation
equations are incorporated for continuity, momentum and energy.

The major aspect of the near-wall behavior from the visco-acoustic point of
view, is the laminar dissipative processes typical to that region. This
analysis is focused on the near-wall processes. Although the solultions derived
are nonsteady in general, the radial wall-layer distributions obtained could
best be demonstrated at steady state. For this reason, the review herein is .
limited to steady behavior. -

Culick [1) derived a solution to the Stokes stream function eguation or cad
flow in a pipe with injected sidewalls., The flow is rotational, and despite .

. 4
*This work was supported by the Air Force Office of Scientific Research, Bolling , 3
Air Force Base, Washinaton, DC, under Contract F49620-81-C~0018. R
This paper is Unclassified. Distribution unlimited, q
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FIGURE . DIMENSIONLESS FIRST ORDER AXIAL PRESSURE
DISTRIBUTION, FROM THE NEAR-FIELD ANALYSIS
MEREIN., THE CURRENT RESULT 1S Pk%}sn OVER
THE ORIGINAL FIGURE OF csp/urc (1937), wmick
ALSO SHOWS THE PARABOLIC FORMULA OF CULICK.
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S 6= ¢.0i8 & (€m)? 2x
I o \ £
— o,qL Ky = 210 \ BROWN (1983 _] = r .
DATA: N
s, e
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a8 U=2x was used, for a cylindrical port, and
subscript zero denotes zeroth arder convention.

Now, from Egs. (29) amd (62),

£ (% )” TglbbiX

gﬂ Fo x z

This varameter is plotted against 1/2x (which
denotes the ratio of blowing to mean axial
velocity) in Fig. 5. A nearly linear relationship
is obtained, using the coefficient values obtained
from the two data groups in Fig. 3. 1In
comparison, the data obtained by Olson and Eckert
[6) i1s considered. Ref. 6 includes a plot of the
ratio of (axial pressure gradient)/(mean dynamic
axial head) vs v */u,* = 1/2x. This obtains an
almost linear correlation, as would be expected
from a parabolic pressure drop. The slight
curvature however, particularly apparent at small
values of 1/2x < 0.01, can be followed only with
the present formulation, not with any parabolic
pressure profile. Thus, the first order pressure
distribution, obtained from the viscous wall layer
analvsis, agrees well with the measured data of
Brown, et al (8], while the associated wall
friction coefficient follows the same trend as
that measured by Olson and Eckert (6].

QONCLUSIONS

1!

Cho (66)

A derivation of the viscous wall layer regime
has been presented, pertaining to injected flow in
an axial porous tube, in simulation of interior
solid propellant rocket flows.

Solutions for the radial coordinate (o y-
dependence) of all the dependent variables wup to
the first order have heen generated, in
polynominal form. The (x,t)-dependence is defined
in terms of a relatively simple partial
differential system.

Particular results of the analysis for the
special case of steady state, are: (1) the first
order pressure perturhation was solved for uniform
By, and its axial distribution is given
explicitly; this term is entirely due to the
laminar dissipative wall-layer processes, and (2)
the blown wall friction coefficient was likewise
defined. Both results correlate well the
available experimental data. Finally, (3) the
zeroth order axial velocity distribution within
the layer is linear radially; thus, to lowest
order, viscous dissipation is negligible in the
axial momentum balance. This indicates why
inviscid, rotational solutions (such as those of
Culick {1] and others, chosen s0 as to satisfy the
no-slip condition at the wall) are 0 successful
in representing this family of flows - to zeroth
order,
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The experimental data of Brown (8] also
demonstrates, as evident in Fig. 3, that
significant departures from the parabolic axial
pressure—~drop profile (as predicted by the
inviscid formulation) evolve at sufficiently large
x. In the meantime, departures from the self-
similar cosine velocity profiles are evident,
which become more appreciable with increasing x.
Elucidation of the first-order pressure
pertrubation seems therefore highly important for
proper understanding of this type of injected
flows. This is undertaken in the remainder of the
present section, for steady state.

To resolve the axial variation of by the
wall layer formulation, the second compatibility
cordition in Bq. (51) can be used, corresponding
to the y-term:

Ci%C Uux
Fo Y X .-
For the special case of uniform (zeroth order)
injection at steady state, the presence of a
nonzero first-order pressure perturhation would

imply ohysically a corresponding nonzero
perturbation upon the mass flux injected, i.e.,

- B
-"‘%x( WA (58)

By = F1(0,x,t) £ 0

as given by Eq. (42). Now at steady state,
although B, is expected to vary with p;, we will
(as a first step), assume for simplicity that
Bg(x) = B, = const.

With the foregoing steady state assumptions,
Bq. (58) can be readily turned into an ordinary
differential equation, for 0 < x < L

A dpyt =
2l b () +b =0

where uniform injection, Fmconst, was assumed;
the coefficients are:

(59)

—_®7/B. -_R/B
b,,:: m>0) lo|= e, >0 (60

Note that at steady state, according to £gs. (39)
and (44), cl-covo-o. The houndary data are,

dpy/dx(0)=0, and p, (x=L)=p (61)

The solution is straightforward; for vositive by

" bozC'ﬂHx‘—' - \/-%:‘ {7(\/5.;. x) 2

Ro) = B(0) + t@\&s(@"‘)‘(sm

This concludes the derivation of the
injected, viscous wall layer, up to second order.
Full solutions, namely, matching between inper and
outer expansions will not be attempted herein.
Impoctant insights are obtained already from
resolving the near-field behavior up to second
order, in terms of the y-polynominals.
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DISCUSSION QP RESULTS

To facilitate comparison with the
experimental data reported by Brown, et al [8],
one may form the normalized axial pressure drop,

Po)-Pi<) - ™
RS = E(&,Q.A\cm\lfob.x\fO(e)

(64)

This formula is used to correlate the experimental
data of Brown, et al [8], as shown in Fig. 3.
Clearly, the measured pressure profile is
correlated very well by Eq. (64), which is
obviously superior to the inviscid expression [1},
shown as well.

A single point of the data (x; p;) has been
utilized to obtain a scale for the comparison
(this is necessary, since no physical input is
available regarding the value of B,, the
injected mass flux perturbation, necessary for
defining by, b,), along with p.=1, F, " =1, and
¥ = 1.4. Suppose now that K =], and we select a
value of B_=60. (This is based on some trial and
error - bug shows how the correlation was obtained
without any regression analysis); then,

bg=1/B,=1/60, by=1/%B=1/1.4x60, = 0.012

boby = WV¥B, = 0.014

To gemonstrate the sensitivity of the axial
pressure drop to Reynolds number (ox to the
parameters K and £), the experimental points of
Fig. 3 were converted from their original scale,

op/5¥pmE
to the Apy/e -form herein, using the relevant
values of M, and Ry, given. The results of this
conversion, for two distinct data groups, are
plotted in Fig. 4, along with their excellent
correlation by Bq. (64).

In Fig. 4, the differences between high
(low Reo) and low (thigh Reo) are amplified.
High measurements appear on top, closest to
the inviscid pressure profile.

Two important observations can therefore be
made: (1) axial pressure variation to lowest
order is O(£), and is g%erned g the dissipative
wall er processes, as derived in analysis

rein. The behavior obtained in x differs from
the parabolic pressure drop formula of Culick [1);
also, (2) one need not invoke local turbulence

generation to explain the departure of measured
Py from the predicted inviscid behavior.

Another property of interest is the wall
friction coefficient, or dimensionless wall shear
stress,

Co= T gt - 0 B rw
where * denotes the mean axial coreflow velccity.

Using dimensionless convention employed herein,
along with the wall layer coordinate,

Co= E ’%’ [2x* (65)
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Thus, h (y,x,t) is second order iny, like €,;
the approoriate boundary condition is,

By(x,t) = hy(0,x,t) - b (B, - €B))/F,  (48)

The axial momentum balance, Bg. (33), after
dividing through by F, and following integration,
yields:

U59)= P[0 B L 2cur))y¥s +

L2 cr-y,,v _ 8w
% % % )% §'s"-',"5 (49)

ul(O,x,t) =0

satisfying the no-slip condition at the wall.
Thus, the perturbed axial velocity is third order
in its y-dependence, and the corresponding viscous
dissipation term (unlike its zeroth-order
counterpart), does not vanish within the layer,

With the foregoing derived results, the
zeroth order energy equation can be shown to yield
merely a condition connecting U, and v, timewise,
One mav turn now to the first-order energy
equation, which seems to yield some simple and
highly useful results even without full solution.
After some manipulation, Bg. (38) obtains:

OF, !
TR, ("%“-% o) +YR(Z +V eV )+
2R _\ i
HN =l M o)
O (50)

The first bracketed term, after using the
foregoing results, is simply
Vo = (C1-vLo) Fo

Using the appropriate first order expressions
obtained herein (for Ui, V3 and hl) in Eq. (50),
and collection of equal powers of y yields:

_L C.’ Co 3
ol B B ) BBy

v | = ©
1P. ‘2 u co’ o ™
I 55 e e, o L

Ry TR LR - et

2% & 3We)}vys =0

(51)

Compatibility with the foregoing derivation
(in which y and (x,t) variable separation was
implemented), can be maintained, provided each of
the bracketed terms in By. (51) vanishes
identically. The resulting four compatibility
relations, in partial differential form,would
determine the behavior of the wall suhlayer system
up to the first order in € , the small
perturbation quantity. However, a total of three
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undetermined coefficients should arise
necessarily, to accommodate coupling with the
outer, inviscid (core) flowfield, through inner/
outer asymptotic matching,

THE FIRST ORDER PRESSURE PERTURBATION

In the outer inviscid flow (coreflow), the
pressure difference is balanced by the axial
acceleration, as

[Po-Fe]Aier® Y O(L)

In the meantime, the available CSD experimental
data clearly shows that the seemingly equivalent
representation,

[?'(o)—P"(O]/—'iw"(x)M:~(%)z~ XE) o

where 0 < £<< 1. Therefore, within the range of
flow conditions simulated herein, it is inferred
that the mean axial coreflow velocity can become
considerably larger than the radial (or injected)
velocity, such that, from Egs. (52) and (53):

*® LTI L
ov ] -
WCHOUTERY/\(nTECTION) ~ O( fe')
and furthermore,
[P*(0)-p*(x) 1/p*(x) ~ M, " O(E).
Recall that Po = Po(t) and pq = P (x,t) as
derived in wall layer analysis. Hence, up to
first order, no radial pressure gradients arise,

and the inner and ocuter pressures must be equal,
viz.,

(54)

1)

@ =p, M),

=p (55)
Suppose now that the leading term in the outer
axial velocity expansion is, according to Bg.
(54),

Q)
©) U-y =)
Ww (K,f]t) ~ —r—_e- + U, '+ hot. 561

while the remaining outer variables are of simpler
form, e.g.,

vO,rt) ~ VO VeV« hot.

Therefore, the cuter axial momentum balance,
derived from Egs. (7)-(12) yields, at order 1/&:

2 ©) (=,
j'x{?ﬁ)u‘f.’ U + Kb )} =0 1

which shows that indeed the outer flow can support
this first-order pressure perturbation. To
conclude, a first-order pressure perturbation
within the flow field, ¢ p(x,t), has been
postulated, following the viscous wall layer
analysis. This pressure is common to both inner
(wall layer) and outer (coreflow) regions. Within
the wall layer, it is balanced by the shear force,
or zeroth-order vorticity generation, as shown in
Eq. (28). In the coreflow, it is balanced by the
lowest-order axial acceleration.
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position (x,t). Even more striking is the
vanishing of the viscous dissipation term at
zeroth order:

Puefyr =0

which leaves in the zeroth-order axial momentum
equation a balance of inertial terms, strictly.
This explains physically the success (up to first
order) of modeling this family of injected flows
by assuming rotational, inviscid motions; such
modeling indeed obtains solutions for the axial
velocity profile, which satisfy the no-slip
condition at the wall (r=}).

It further appears that the shear stress, Bg.
(30), is proportional to the first-order axial
pressure gradient, while being inversely
proportional to the injected mass flux, as would
be expected. Of course, PP, /5x depends on F,, and
one expects their ratio to be finite at the ftmit
as zero injection is approached.

The zeroth-order differential system reads:

‘%%1' ?%—% =-~&

(31)
_%F’-r %( (Fowko) - %(F¢V|+F,Vo)=
RVt :23!§
3 Y @
Rttt 2 v rGve) =
—GpVo+ DU 2y .

%‘ +%(’fau2)—%6gvo+mm)= -YE Vot
- 2% ~_ 2t
C-OwR —(V"% *V%%)]’L " a0

The corresponding first-order formulation
reads:

T3 - —-R-vR
(35)
?#F*' %(5“«*‘:.“0)‘%[\’«@*?(%)]:
Tl $3e 3-S5
(36)
g_sl+ %((Cqu.*eou.)—%(é,v. +evu,)=
N

(37)
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2R+ 2 (iR A P)- TRV )= dEvey +
(vt )« By e 20
(7=1) (u"%ﬁ; +u°';§‘ —V'%) : (38)

With the foregoing result for axial velocity,
the zeroth order formulation can be utilized to

solve for the y-dependence of the other dependent
variables. The zeroth order continuity equation
Can be written in spiit form, since F, and 9, are
independent of y:

?%gﬁ?t'*-F;(xjt)==<:oé*jt)
(39)

Ku R .
%(V% :';'x}"j - %='Q(¥Jf) (40)

where C,(x,t) is a common separation parmeter,
with a range of values uniquely corresponding to
the boundary data. The second equation yields

FL%t) = Bolx,t) + Colxot) y+-2(ell)y? (41
vhere:
By (x,t) = Fy(0,x,t) (42)
K
Uplx,t) ¥ 2 AR oK (43) -
(-4

Similarly, the zeroth order radial momentum
equation ylelds, after splitting:

(2t + EV, = C,(x5%)

(44)
Vi(x/t;4)= B (X, t)+ C %l -;:/"C" Y+
A
B,04t)= vy(x;t;0) (45)

The foregoing results for F and V) vield for the
first-order densitv:

gxxﬁﬁg)==(saf'?ben)/‘$ <+ (ZCQ"C;/&b)IJ
L. En (29,
“*3 V.‘L[_UZS'L-Z%Z%W—LJyI

(46)
Note that:

QOx = @B, - €Byv,

80 that €@, is uniquely defined and an additional
integration constant is not necessary. Now,
following the definition of 4, and since

’aPIf'Z\j =?h./ﬁy :’Zsofaj =0,

then

h
hilyixt) = ZQWIXE) + Bylx,t)  (47)
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©) At the (nonpermeable solid) head-end closure,

(t, r, x=0):
v=0, u=0, h= hH(t,t) (16)

The functions v, (x,t),

(x,t) and hylr,t) are
arbitrary imposed distri

tions,

(@) The exit plane, defined by (t, r, x=L), forms
an entrance into a short, convergent nozzle
section.

THE INJECTED SIDEWALL LAYER

The flow region of interest is close to the
surface, where viscous forces are expected to be
appreciable within a thin layer.

For the neighborhood of r=1, the following
transform is proposed for the radial coordinate:

Yy = Q-r)/g an
which magnifies the wall layer, with
06<€g F1/YRg 1 18
Thus, -
Yor =—‘Eg—‘3 ? ?%rz‘—lg‘ﬂ‘ (19)
and c=1l- gy

The assumption for small injection Mach number is
constrained as follows. Obviously, the injection
Mach number appears as an additional parameter in
the formulation (equations of momentum and
energy). In the flow types of interest for
simulation herein, is also very small; in
consideration of typical experimental
configurations at CSD/UTC, we find

M2 ~ O(1/Reo)~ QCED)

which adequately represents a range of cold-flow
conditions., This offers great simplification in
the analysis, although at the cost of narrower
rarqge of general application (considering the
relative freedom of the two major flow parameters,

and M_.). Therefore, a parameter is
?ﬁgmduc@,

K = Reo _ &> ~ O 1)
m= ME T M (20)
The question of timescale depends upon the
range of frequencies of interest. The following
reasoning will demonstrate that for the range of
conditions considered for the present simulation,

the timescale can remain the same one as in the
ooreflow. The viscous layer thickness is

B - R/ VR (@1

The Stokes Layer thickness (for acoustic
perturbations with a frequency f.)

[
om0 - (Vr25)" @2
The ratio of these two thickness scales is,

v 8510 'J f R/ Ve ,/s: 23)
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where smn:s the relevant (injection) Strouhal
number, range of Strouhal numbers considered
is Sp» ~ 0(1), s0 one need not introduce any
additional timescales,

The independent variables are (x,y,t), while the
associated dependent variables, in the wall-layer,
are perturhed,

PC=C+ €0 , VEVet €V, U=UtEW,
h':ho"'ék’ ’

while the following abbreviations are introduced,
Fo= Ve, FLIEQM TS Vo,

Go=Solko ; 6= K Y, +§Uo

It should be stresed that the O( £ ) terms
represent perturbation quantities which may be
later considered as series expansions. The
present analysis is concerned with the two lowest
orders only. This in no way implies limitation
to so-called "linear" oconsiderations,

(24)

(25)

For the perturbation variables of Egs. (17)-
(25), the continuity equation yields

%—b@o"' €S, )- % %(FO*'E’CI +€%F, V')+

£(cree)=-(1+ey)(RreR)

(26)

Similar substitution of perturbed variables is

also carried cut for the remaining equations of
motion; a detailed derivation is available in Ref.
17. A hierarchy of equations can then be
collected, for equal powers of the small quantity g,

The lower~order analysis (concerning negative
powers of £) readily vields the following simple
results:
FO = Fo(xlt) ’ Vo = Vo(xrt) ' _Do = Po(t):
P = Py (X,t) 27

Also, the following differential equation arises
from the axial momentum balance at order 1/ E :

2R

K 5% — %(E“‘)=O (28)
which can be integrated to reveal the y-dependence
of Uy

K

Ut )= KDYy (29) |
with Uy (x,t30) =0 . p
Of course, the (x,t) dependence of u, still 1

remains to be found, However, its dependence
F the 1?xer coordinate, y, is found to 3
near; this result sever mpor tant

Implications. The axial shear stress component ]
within the layer, R
-y

£ Do Km R :

xy 7Y F ox, (30) J

is obviously nonzero in general, while being
independent of distance from the wall at any given
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Analytical Model of the Coreflow

The equations of motion pertaining to the
core-flow simulation are presented, for an
axisymmetric flow field. The objective is to
simulate the cold-flow experiments of Dr. Brown at
UTC/CSD, which utilize cylindrical geometry. For
the coreflow region, with tygical injection
Reynolds numbers of order 107, we assumed constant
and uniform thermophysical properties. A
schematic of the physical confiquration is shown
in Fig. 1. Turbulence and combustion are
orecluded from the present formulation, for
reasons discussed earlier. Other than these
simplifications, the full compressible, nonsteady,
viscous equations of motion are considered, with
all the dissipative terms included.

The five equations of motion, for continuity,
radial momentum, axial momentum and energy are
presented in differential form. A caloric
equation of state (pertaining to perfect gas)
completes the model to form closure of the
dependent variables.

The following dimensionless independent
variables are introduced, based on the two
physical scales of reference inner chamber radius,
R,*, and reference injection velocity, v *:

r=r*/R* x= X*/R*, t = t*/to' (1)
where to" = Pb’/vo'
The dependent variables are:

v Eyrt/uot,  umut/vet,
€ =%"/R% n=W/W,, p=pYF>
(2)

The properties used for non-dimensionalization are
the reference (injected) density, €Y, and the
reference chamber pressure, P,*; the corresponding

thermal enthalpy, h,*, is calculated from the
caloric equation of state,

=i
f,o = F VYo h 3)
where X-Cp/(.\; is the specific heat ratio, is

considered a oonstant. The reference speed of
sound is

3
a8 = (%) ={C-nis “
The corresponding injection Mach number is
=\t ©

The reference (injection) Reynolds number, and
Prandtl rnumber are, respectively,

Beo= %\‘&; R=pG/X

Recall that the viacoelty, thermal oconductivity
and isobaric specific heat are all uniform and
constant within the present cold-flow simulation.
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These idealizations are incorporated merely for
convenience, in allowing clear identification of
physical interactions within the coreflow, at low
(axial) Mach numbers; sharp pressure and
temperature variations are obviously precluded.
The dimensionless equations of motion are as
follows, far the region
0<xc<], 0<rcecl, t > 0:
Y
l.+?L2(¢F)+-lC_9 =g
>t IX M
where the dependent variable vector is,
T=(3, v, u,en) ®
The radial and axial flux terms are, respectively,

FT = (v, ov? ouv, ~ohv)

T = (64, ovuu, guz-q-.,ﬁ} , ‘o’ehu)

(9)

(10)

where superscript T denotes vector transpose. The
right-hand side (source) terms are defined: S5y=0,

3 v
S,= 5, r(B-L) - o

[?z;v» i%;r( 4';7)]'—2&0 1y
‘/r‘(gé 3_\()_‘_
(2633 (BB, oo

Z+

(13)

The following physical boundary data are
available, for the cold-flow simulation:

(a) On the centerline, (t, r=0, x):

{b) At the porous (injected) surface, (t, r-1, X):

v = —v(x,t), u=0, he=hylxct) (15)
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The major aspect of the near~wall behavior
from the visco—acoustic point of view, is the
laminar dissipative processes typical to that
reqion. This analysis is focused on the near-wall
processes, Although the solultions derived are
nonsteady in general, the radial wall-layer
distributions obtained could best be demonstrated
at steady state, For this reason, the review
herein is limited to steady behavior.

Culick {l] derived a solution to the Stokes
stream function equation or flow in a pipe with
injected sidewalls, The flow is rotational, and
despite being inviscid, could obtain a solution
for the axial velocity component which satisfied
the no-slip boundary condition at the wall., The
solution which satisfies the boundary data,
namely, u(x=0)=0, u(r=1)=0, and v(r=l)=l, yields:

V=—sin(Zr2)/r
W = x oo (T )

Of the general family of solutions obtainable,
only that which allows full determination of the
vorticity (the azymuthal component alone remains,)
by the available boundary data, is physically
meaningful; the rest were therefore rejected. The
axial pressure distribution obtained from the
momentum equation is parabolic,

(Ploy P/ 5\ * = auy*

This type of injected flow field has been
investigated previously both experimentally and
theoretically. In particular the early
theoretical work of Berman [2], who arrived at a
power-series solution to the perturbation problem
of suction in a flat, porous-walled channel, with
the suction Reynolds number serving as smail-
perturhation quantity. The analytical results of
G. Taylor (3] and Wageman and Guevara (4] more
closely resemble the cosine terms of Culick (1];
both {3,4] have carried out experiments as well,
and both demonstrated very good agreement between
the measured axial velocity profiles and the
calculated ones. It appears that Culick (1) has
arrived at his results independently, since no
reference was made to any of the previous works.
In the experiments by Dunlap, Willoughby and
Hermsen [5], the formulation derived by Culick [1}
was used to correlate the measured data, again
with considerable success, regarding the coreflow
axial velocity profile, that is, away from the
close neighborhood of the wall.

Other experiments by Olson and Eckert (6] and
later by Huesman and Eckert [7) tend likewise to
verify the validity of this formulation, in
particular regarding the radial velocity profile,
which indeed exhibits a peak near the porous
surface (6], as well as the axial pressure
distribution (the latter shown as a linear
correltaion between the friction coefficient, C¢,
and the inverse mean axial velocity, which are
both proportional to 1/x.

The recent (and ongoing) experimental study
by Brown, et al [8] provides valuable information
regarding the steady state axial pressure profile
and the axial velocity distribution, as well as
nonsteady wall heat transfer (obtained by exciting
the standing acoustic modes in the tube),
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Departure of the steady state data from the
predictions of the aforementioned formulation by
Culick [1) was attributed to possible transition
to turbulence., As will be shown in this study,
the pressure data obtained can be simulated verv
well with a first-order pressure perturbation,
arising from the laminar viscous wall-layer
analysis.

Earlier, Yagodkin [9) reported an
experimental cold flow setup, with an injected
porous pipe. The maximal injection Reynolds
number was 250, which is 2-3 orders of magnitude
less than that corresponding to actual internal
rocket flows. Hot-wire anemometry was used to
obtain axial velocity and axial velocity
fluctuation vs axial and radial distance.
Turbulence intensity seems to peak near the
surface, and decrease toward the centerline and
toward the pipe wall, These observations are
qualitatively similar to those obtained later by
Yamada, et al [10]. Although a transition region,
at Reo-mo-lso, was speculated {9] to involve
*large eddy structures®, no such evidence appears
in the experimental data reported {9].

Further studies by Yagodkin, with Varapaev
(11} and Sviridenkov [12] are theoretical, and
address the problem of laminar stability of
injected channel flows, i.e., transition to
turbulence. Thus, modified versions of the Orr-
Sommer field problem were investigated analytically
[11] and numerically [12]). Two related laminar
flow stability analyses are by Goldshtik, et al
[13) and Alekseev, et al [l14]. None of thase
theoretical analyses indicates the presence of
large turbulent eddy structures prior to a full
transition point, neither d they obtain an origin
of such turbulence on the centerline upstream.

Recently Flandro [15) has carried cut a
theoretical analysis for a burning propellant in a
cylindrical grain, under the effect of incident
acoustic waves., A detailed formulation was
derived with a double expansion, in terms of both
inverse Reynolds number as well as Mach number
(independent small parameters). A nonsteady
premixed combustion zone was considered near the
propellant surface; the assumption is made,
however, that flow within the combustion zone is
pure radial, i.e., zero axial comonent to all
ordrs. Thus it could be anticipated that the
results resemble (regarding nonsteady combustion
behavior) those of T'ien (16), and there seems to
be only small differences between the response to
tangent and to perpendicular wave incedence. The
problem is finally solved numerically, and details
of the inner/outer matching process were not given,

In the remairder of this paper, the viscous,
injected wall layer formulation is derived, in
perturbation form. Analytical near field
solutions are obtained for all variables up to
secord order, regarding the radial coordinate
dependence; the remaining (x,t)-dependence is
shown to be governed by relatively simple partial
differential system. These solutions are
discussed, with particular attention to the
resultant (first order) pressure distribution and
wall shear stress, for which experimental data are
available.
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NONLINEAR COMBUSTION INSTABILITY IN SOLID
PROPELLANT MOTORS: VISCO-ACOUSTIC COUPLING

Dr. Moshe Ben~Reuven*
Princeton Cambustion Research Laboratories, Inc,
Mornmouth Junction, New Jersey

ABSTRACT

This analysis is aimed at the near-wall
processes in an injected, axisymmetric, viscous
flow. It is a part of an overall study of solid
propellant rocket instability, in which cold flow
simulation is evaluated as a tool to elucidate
possible instability-driving mechanisms. One such
prominent mechanism seems to be visco-acaustic
ocounling, as indicated by earlier detailed order
of magnitude analysis. The major component of the
overall study, not reported herein, involves
numer ical simulation of the full coreflow
equations of motion (nonsteady, axisummetric) by a
modified MacCormack integration technique. The
formulation is presented in terms of a singular
boundary layer problem, with detail (up to second
order) given only to the near-wall region. The
injection Reynolds rumber is assumed large, and
its inverse square root serves as an appropriate
small-perturbation quantity. The injected Mach
number is also small, and taken of the same order
as the aforesaid small quantity. The radial-
dependence of the inner solutions up to second
order is solved, in polynominal form, This leaves
the (x,t) dependence to much simpler partial
differential equations. Particular results
demonstrate the existence of a first-order
pressure verturbation, which arises due to the
dissipative near-wall processes. This pressure
and the associated viscous friction coefficient
are shown to agree very well with experimental
injected flow data.

NOMENCLATURE

= nvzle throat area and port exit area,
respectively

= adiahatic velocity of sound

= wall friction coefficient,

= jsochoric and isobaric specific heats
(J/kg-K}

= radial mass flux (dimensionless)

= axial mass flux (dimensionless)

= thermal enthalpy, dimensionless

= ratio of inverse Reynolds number and
Mach number sguared

= chamber length

= Mach mumber

= pressure

= Prandt]l rumber

= channel radius

= injected Reynolds number

= radial coordinate

= "source”-terms in the equations of
motion for coreflow

= Strouhal number, injected

t = time (dimensionless)

Uy = parameter defining (x,t) - variation
of wall layer axial velocity component

= axial velocity, and mean axial
coreflow velocity respectively
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v = radial velocity component
x = axjial distance (dimensionless)
y = radial, magnified wall layer

coordinate, perpendicular to surface,

Greek 1ls:

%/cv specific heat ratio
fference, increment

length scales

small perturbation quantity
thermal conductivity of gas (air),
J/K-m-S

viscosity coefficient, kg/m-s
density

o Pmotb>

Subscripts, Superscripts:

= denotes zeroth order (perturbation)
= denotes first order oerturbation
= denotes dimensional quantity

BACRGROOND

This is part of a study aimed at elucidation
of the physical mechanisms capable of driving
aocoustic instability in solid propellant motors,
particularly of the type termed velocitw-coupled
instability. Previous studies on the coupling
between velocity oscillations and the combustion
process in solid propellant motors have
demonstrated the complexity of the overall
phenomenon, but have not yet defined the basic
mechanisms nor how they operate under flow
conditions prevailing in rocket chambers.
Critical literature review and order of magnitude
analyses of velocity coupling mechanisms have been
carried cut, including visco-acoustic coupling and
turbulence combustion coupling. The major goal of
the study is the analytical simulation of the
interior flow field within a solid propellant
qrain. The focus is on the Stokes layer, with the
objective of investigating the particular
instability mechanism of visco—acoustic coupling.
Preliminary analysis has indicated that this
mechanism is both plausible and sufficiently
powerful to drive nonlinear vibrations; it has
been shown that the frequency-dependent surface
heat feedback component, due to viscous/acoustic
coupling, has both phase and amplitude ranges
which would enable driving of acoustic vibrations;
its amplitude tends to increase as the mean
coreflow Mach number and the frequency become
higher. A comprehensive analytical model of the
flow field within the viscous wall layer region
has been derived, for an axisymmetric, nonsteady
flow field configuration. Por a simulation of the
cold flow test results gnerated at UTC/CSD, four
conservation equations are incorporated for
continuity, momentum and energy.
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The corresponding injection Mach number is
M = * 6
o'—vﬁ’/a‘: (&)

The reference (injection) Reynolds number and Prandtl number are, respectively,

1E:e° = S%*\h*lzg'/VLLf' ) -F} L‘?C¥ﬁ/§\f (7)

Recall that the viscosity, thermal conductivity and isobaric specific heat are
all uniform and constant within the present cold-flow simulation., These
idealizations are incorporated merely for convenience, in allowing clear
identification of physical interactions within the coreflow, at low (axial) Mach
numbers; sharp pressure and temperature variation are obviously precluded.

The dimensionless equations of motion are as follows, for the region

0 ¢« x <1, 0<r«<l, t> 0z -

where the dependent variable vector is,

U'r_(§> v eu gh) (9

The radial and axial flux terms are, respectively,

e (§V . ev? euv wehv )

(8)

N + é;i%%;(!‘F: ) i’j%%%t = S:

(10)

6T =/
( Sw viL 9“7 £ Tphu
S T °F ) (11)

where sunerscrip: T deno.es vector transpose. The right~hand side (source) terms
are defined: Sl=0,

2 L (V. ATR 43V _ Flor
S:.:: %Zorw'%)"’eeo W"*—Smx 3 or M

(12)

-4
s= U (B 1B) e g, (G5t Bhr i)

(13)
‘ r h_ 2% 2%
84 = ’d(v’%ru’%%)_*_ 'U_é%p (%2_ 1.%___;* '_h:,
. \2 4
2 {512 @ ) BER)

- 4[ \‘—/f{?"[*_%)*%(r%]z . (14)

The purameters,¥, Pr, M 2, R are all constan:s, Note that incorporation of
t~e pressure gradient wi?hin %%e S, source term in the radial momentum eguation,
w-.le the axial pressure gradient }s included within the axial flux comonent,
“,, 15 merely for convenience. In the meantime, the viscous and thermal
4lesizative terms, “O(l/Reo), are expected to be verv small over most of the

e’i~w dormain, excluding the neighborhood of the walls.
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The following physical boundary data are available, for the cold-flow
simulation:

(a) On the centerline, (t, r=0, x):

V=0, 2ufor=0, 2pler=0, 2hfor=0 as)

(b) At the porous (injected) surface, (t, r=1, x):
vV = o-v(x,t), u=0, h = hy(x,t) (16)
(c) At the (nonpermeable solid) head-end closure, (t, r, x=0):
v=0, u =0, h = hy(r,t) 17)
The functions vg(x,t), hg(x,t) and hy(r,t) are arbitrary imposed distributions.
(d) The exit plane, defined by (t, r, x=L), forms an entrance into a short,
convergent nozzle section. This nozzle section is treated separately from

the rest of the flow field.

The foregoing discussion has summarized the coreflow analytical model,
including the equations of motion and the relevant boundary data.

THE INJECTED SIDEWALL LAYER

The flow region of interset is close to the surface, where viscous forces
are expected to be appreciable within a thin layer, as shown i~ Fi1~, 2

For the neighborhood of r=1, the following transform is proposed for the
radial coordinate:

y = (1-1)/¢ (18)

which magnifies the wall layer, with

0 < &sl/VReo << 1 (19)

L 2 'aL
'B/gr-_:'ﬂe—%,"’/ar =l€1§§j—"

and r=1- gy

(20)

The assumotion for small injection Mach number is constrained as follows.
Obviously, the injection Mach number appears as an additional parameter in the
formulation (eguations of momentum and eneray). In the flow fields of interest
for simulation herein, M_ is also very small; in consideration of typical
experiments at CSD/UTC with air injection, we find

M2 = OWReo) ~O (€

which adequately represents a range of cold-flow conditions, This offers great
simplification in the analysis, although at the cost of narrower range of
qeneral application (considering the relative freedom of the two major flow
parameters, R,, and M,). Therefore, 2 parameter is introduced,

K= (/Re)/TM =302 ~ O(1)

The question of timescale depends upon the range of freguencies of
interest, The following reasoning will demonstrate that for the range of
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cenditjons considered for the present simulation, the timescale can remain the ’
‘ same one as in the coreflow. The viscous layer thickness is
v - Rt/ VReg (22) o
L;-' The Stokes Layer thickness (for acoustic perturbations with a frequency f.) T
i * NIz
g Sero -(\)/fo) (23) T
h The ratio of these two thickness scales is, :f""i.‘:]
Sv/ gSTO - ufono'/ = ‘SRO (24)
where Spro is the relevant (injection) Strouhal number. The range of Strouhal
numbers considered is Spy ~ 0(1), s0 one need not introduce any additional
timescales,
The independent variables are (x,y,t), while the associated dependent J

variables, in the wall-layer, are perturbed,

f:?o‘(’g?,‘ 5 V?—Vo*ev1 5 U= u0*€u| ) ‘q,.‘—'l'\o'(‘eh‘l
(25)

while the following abbreviations are introduced,
F.=ey = = _
?O ° > Go Solho ) F\ -?ovl‘*' € Vo 5 6‘— f;ulfﬁu.o (26)

For the perturbation variables of Egs. (18)-(26), the continuity eguation )
yields o

%(?o*e?')" %%<F¢+ €E+ E?‘VD 1_32)((6°f€é’1)= ..
— (1+ev)(E +£F) .

.

PP

The following hierarchy is collected:

ORDER 1/ &

- C =t t) """" B
Hfy=0 =P % e ]
ORDEF £° (ZEROTH) '
?P° e _ ’a_‘El = —F ]

T oX 39 ° (29)

orDERr  E! (FIRrsT)

R - 2%‘ =-Ff-yk.

e T ox (30

The radial momentum balance, after similar substitution, vields the following

—— -
.

hierarchy. R

- ORDER 1/ E€3: =
o -‘K%?P'/?'ﬁ =0 = h=k(xt) (31) ; \
® - LRDER 1/ &2 ' ) '1
— kKWl =0 = £,=F (1) (32) i
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ORDER 1/2 :
—?(FoVa)/?lo =0 (33) !
ORDER _£° (ZEROTH):
'ZF
7t T ox 5% (Foo)- 2, (F \/.-«F,vo)——cvof%? Ve )
ORDER _El (FIRST):
[a=h -t-a%( U, +F us—%(v,(qq:;v,)):
~TRwy« (vsmw) ]+ $ G+ §30 — LTt
(35)
Similarly, the axial momentum balance yields the associated hierarchy:
ORDER 1/ € 2: .
KmPB[ox =0 =t £ =f (£) (36)

ORDER 1/ E :

o %«; - 2/ Fole) =

Qe K 3‘9(r° ) 0 (37) -
where we used Fouy = Gyv,. This equation is of great importance, as will be :
shown later. )

ORPER £ ° (ZEROTH):

i % +%<(C’° Wt c,'uo)_ %(éov‘ fc,lv.,> — Nt & 'Zy"' N

(38)
ORDEP.__E£ 1 (FIRST):

g;%}.+§iQ5J4ffébu')_-%g(ghvfk€?emd>=:-0506*159%)

_1l7v
_ oY+ o T o — Yoy T3 me

(39)

' After similar substitution, the enthalpy eguation in the wall layer yields
the following hierarchy, for

¢‘° ;‘:Fo "\.o > ¢‘ Eﬁh‘ -t-ﬂho (40)
ORDER 1/& -
’ 2,Ve >, ]
—T == = <\, © (41) ’
oy Y SON

....................................

...............................................................
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Note that on the left hand side, according to Egs. (2B), (33)
M|y =O

(since F 0 in general). Now, according to Eg. (36), p, = p.(t), 80 that
both sidgs/are identically zero: as ° ° '

¢ = ()= VRO

Therefore, Eq. (41) does not yield any new information.

ORDER  €° (ZEROTH)

2. + 3 (vtue) - 3 (TR TRM) = T ¥e

+('r«\)[uo% - (V,%D...Vo%)]*— % a%*d’i

(42)
OorRDER €1 (FIrsT)

’3%. + ?x(“( & uotTU,) —% (Y@v) = —TVeY + Y GVt v,) -

o 20 _

+(Y«\){ u,”_ﬁ-‘)"-ruo—z—-x‘—v.,,—la

; (e 20 —
.. + P(( ﬂ"'%)_ »

(43)

This concludes the derivation of the perturbed eguations of motion.

The results of lower-order analysis can be summarized as follows., From Eq.
(28),

?OVO - c; = Fo (X,‘\'-')

while from Eg. (2.87), using the last equation,
Vo = Vg (x,t) (44)
Thus g’, Vv, and F, are all independent of y. Further, from Egs. (31) and
(36) Yearfy .
R=h&), &.=4 (£) L

while from Eq. (32),

Py = Py (x,t)s (45)
so that both p, and p; are independent of y. As 2 consequence of Eq. (45), .. _a
I
G+ Fiho = & (x;t) (46) )
One may now proceed to solve Eg. (37) directly for Ug? iﬁ
i — "M K TP, . ' b
KM% =K 2 =P U X Yt)= & Bx Y ]
.’J
(47 -
.-Z‘_j
T
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with the boundary condition, (no-slip):
Uy (x,0,t) = 0 (48)
Of course, the (x,t) dependence of u, still remains to be found. However,

its dependence upon the layer coordinate, y, is found to be linear; this result
is certainly not obvious, and has several important Implications,

The shear stress within the layer,

—%N W"/&j @(. . (49)

is obviously nonzero in general, while being independent of distance from the
wall at any given station (x,t). Even more striking is the vanishing of the
viscous dissipation term at 2eroth order:

?F(Lqéxdq. =0

which leaves in the zeroth-order axial momentum eguation a balance of inertial
terms, strictly, cf. Eq. (38). This explains physically the success (up to
first order) of modeling this family of injected flows by assuming rotational,
inviscid motions; such modeling indeed obtains soluvtions for the axial velocity
profile, which satisfy the no-slip condition at the wall (rsl).

It further appears that the shear stress, Eqg. (49), is proportional to the
first-order axial pressure gradient, while being inversely proportional to the
injected mass flux, as would be expected. Of course,dF /2Xx depends on Fo, and
one expects their ratio to be finite at the limit as zero injection is
approached.

In addition to the foregoing result for axial velocity, the zeroth order

formulation can be vtilized to solve for the y-dependence of the other dependent
variables. The zeroth order continuity eguation can be written now as

??o/‘zﬂr + G foXx — [+ =0
Now, since F, and €@ are independent of y, henze, one may split the foregoing

equation,
PRI+ Fo(X ) = Co(x 1)

(50)

%c( Es & )’U =—Co (":t) (51)

where Colx,t) is a common separation parmeter, with a range of value- uniguely
corresoondzng to the boundary data.

The second eguation yields

Fi(y,x,t) = Bolx,t) + CO(X.t).y+%%°y2 (52)

where:
Bo(x,t) ® Fy(0,x,t) (53)
9o (x,t) & &.?{}E . (54)

Similarly, from the zeroth order radial momentum eguation:

?Fo/m ‘f'FcVO = Cq (X,‘t)

(55)
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% (% Z )Y - Z (WPl ) = —C,(xt)

The last equation can be integrated, (s
Vi(,Xt)=B,x)+ CVeCo 1 ku 2R o
1(,%,t) X))+ F—Y+3 = %Jx(a%y)ym)

Blzvl(o)x,t) . (57)
The foregoing results for F; and V; yield for the first-order density:
?l(ldlxlt):(so—?osl)/VO + (Zco-—Q/vo)q
L K (D% _, P 2lun
L e Z’zx‘_“'axa_]"fz -

Note that: §,(0,x,t) = (B, = PoB;)v,

so that €, is uniquely defined and an additional integration constant is not
necessary.

Now, following the definition of <b1 and since
iy =0 , Shofry="lty=0,
ho

by(y,x,t) = -F;Q.(y.x.t) + By(x,t) (59)

then:

Thus, hjly,x,t) is second order in y, like fl; the appropriate boundary
condition is,

By(x,t) = hy(0,%,t) - ho(By - €B1)/Fq (60)

The axial momentum, after dividing through by F,, Eq. (38) leads to:

,é_ of i_abao Q&af +2=-@ée——&° Em
o Y~ Ry
- B 34-“'5 - (61)

Now, according to the foregoing results:

1 2% — Co _
£ ge = '

= (62)
_ l_ _ _L_ :39<o
F.,?";:l\g = "R 29" Fo (63)
—F 2o _ _ ¢
7Y /Y (64)
Substitution into Eq. ( 6! ) yields, after some manipulation:
tz&t‘__ ?!29 J_,Z!Jp CoUs o U
Y .{?'7’"— %]Q_q +(W ’;:';)‘1—87::
(65)

UNCLASSIFIED




_- = am = wm

-83-

UNCLASSIFIED

where

Uy = % (%PL;‘) =3,/§>° (66)

thus,

" — U QU
‘(qd)xlt) =3 [?- ox % %J %?3 +(¢o%-¥)%
_ B ° (67)
and ¢ .mj
Ul(olx't) =0

satisfying the no-slip condition at the wall. Thus, the perturbed axial
velocity is third order in its y-dependence, and the corresponding viscous
dissivation term (unlike its zeroth-order counterpart), does not vanish within
the layer.

With the foregoing derived results, the zeroth order energy equation can
be shown to vield merely a condition conection U, and v, timewise:

t):/\/o = (:4 (t:)

One may turn now to the first-order energy eguation, which seems to yield some
simply and highly useful results even without full solution, Equation (43)
written in terms of pressure, reads:

T2 [ r %, J-7 R R = AL AARLAY

(68)

9,

-122h
+(‘f-()u«>74% + B
(69)
After some manipulation one obtains:
¥ ' V. I 9B T 2t
_2-’6_‘ +TR 7‘3%— '_a_j'+v°>+7%( 23’7C+v°1j+v‘>+ Ueox (53 1;70)

The first bracketed term, after using Eq. (68) and the foregoing results, is
simoly

Vo = (€1-voCo) /Fg

The enthalpy term, according to Egs. (58) and (59) is:

M _ ho f 2 _ 2&?2«»3)&“ ho 2 2o
ﬁ" v,(vx*» Tk DX Vo = (v.,). 1)
The first order sxial velocity gradient car be found from Eq. (67).

Substitution of the last results along with the appropriate expression for v,
into Eq. (70) and collection of egual powers of y yields:
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Kdid 1~ Vo ! - . ©
S +TP, (o ~ S tele) T h. 2. 82)« 7F.8, by

-r{_‘xp. %(3_';??:)-:-"0&,\/.-{- c.‘:é';\f‘.’?'po +U$2—E }y

A R AT L

+B{ & 2% @MYy =0 W

Compatibility with the foregoing derivation (in which y and (x,t) variable
separation was implemented), can be maintained, provided each of the bracketed
terms in Eg. (72) vanishes identically. The resulting four compatibility
relations(partial differential)would determine the behavior of the wall sublaver
system up to the 1irst order in & , the small perturbation guantity. However,
a total of three undetermined coefficients should arise necessarily, to
accommodate coupling with the outer, inviscid (core) flowfield, through inner/
outer asymptotic matching.

THE FIRST ORDER PRESSURE PERTURBATION

Of particular interest in the present analysis is the pressure,

PlY,x,t) = po(t) + Epyix,t)

which is a directly measurable guantity, From the axial momentum balance in
perturbed form, it is evident that the rotational ("inviscid") coreflow can not
sustain a first order term like dp;/9x herein; the lswest-order axial pressure
gradient effect evolves only at second order, or €“p,-level. This is clearly
borne out in the analyses of Qulick, and others, in whilch the axial pressure
drop is proportional to Y M ° (Mach number of injection, squared), or to €
according to the convention employed here,

2 o

This, however, is not what is observed in the recent injected cold flow
experiments of Brown, et al at CSD/UTC; the measured axial pressure profiles
clearly indicate variation of order M, ~ E, or first order.

It therefore seems that the viscous wall layer, with its inherent first- AR
order dissipative processes, impresses this axial pressure variation, at first =
order, over the entire cross section of the injected channel. Needless to say,
this would involve a corresponding variation or distortion of the coreflow
radial and axial velocitv profiles - from their zeroth order representation.

To resolve the axial variation of py by the wall layer formulation, the
second compatibility condition in Egq. {75) can be used, corresponding to the y-term:

104 ~CoV. )

v T F T =0 ..

2 . R ox (73)

For the special case of uniform (zeroth order) injection at steady state, the A

presence of a nonzero first-order pressure perturbation would imply physically a. R
corresponding nonzero perturbation upon the mass flux injected, i.e,, .

Bo - Fl(onxvt) { 0

as given by Eq. (53). Now at steady state, although B, is expected to vary
with p;, we will assume for simplicity that Bg(x) = i; = const.

With the foregoing steady state assumptions, Eq. (73) can be readily
turned jinto an ordinary differential equation, for 0«<x<L:

AR ’
;l—)?“'— Q@jﬁf‘()t-r b, = 0 (74)
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where »,(x) is the steady state first-order pressure perturbation; the f
coefficients are:

b= &6 L = BIE _

° Kin/Vo ) V< TR (75) 5
Note that at steady state, according to Eqs. (50 ) and (55), respectively, Co=F, L“a]
and Cy*F,v,; thus, in Eq. (73), Cy-C v =0.

The boundary data are,

dpy/dr(0)=0, and  pj(x=L)=pp (76)

The solution is straightforward,

AR/ = —\bolb, t}(m") (77)

(78)

o
1’10() =f 4—{;;&..’(..16/675'):) ,
This concludes the derivation of the injected, viscous wall layer, up to
second order. Full solutions, namely, matching between inner and outer
expansions will not be attempted herin. Important insights are obtained already
from resolving the near-field behavior up to second ordez, in terms of the y-
polynominals.

DISCUSSION OF RESULTS

To facilitate comparison with the experimental data reported by Brown, et
al, one may form the normalized axial pressure differential,

Aﬂ = ?——E— = éié( p(x:o)— F(x)>=-é"‘é L\Co’.) bob, K \

(79}

This axial pressure differential expression is used to correlate the
experimental data of Brown, et al, as shown in Fig, 3. Clearly, the measured
pressure orofile is correlated very well by Eq. (79), which is obviously
superior to the expression attributed to Culick, shown as well,

It should be pointed out that a single point of the data (x;[§p1) has been
vtilized to obtain a scale for the comparison (this is necessary, since no
physical input is available regarding the value of B,, the perturbed injected
mass flux, necessary for defining b,, by), along witg Po*Fq = vo = 1, and Y=
1.4. Suppose now that K =1, and we select a value of 80-68. (?his is based on
some trial and error - but shows how the correlation was obtained without any
regression analysis); then,

be=1/B,=1/60, b=1/ 3 By=1/1.4x60, = 0.012
Vbob, = Vg B, = 0.014

Two important observations are therfore demonstrated: (1) axial pressure
variation to lowest order is O(£), and is governed by the dissipative wall
layer processes, as shown in the rigorous analysis herein. The behavior
ohtained in x differs from than the parabolic pressure drop formula of Culick
{1), and (2) one need not invoke local turbulence generation or turhulence
encroachment upon the surface to explain the departure of measured p; from a
laminar behavior.

Another oroperty of interest is the wall friction coefficient, or
dimensionless wall shear stress,

Ce =Tl is = - T /i i
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here U* denotes the mean axial coreflow velocity. Using dimensionless
>nvention employed herein, along with the wall layer coordinate,

Cgo =— 27‘2%/—3” (80)

5 u=2x was vsed, for a cylindrical port, and subscript zero denotes zeroth
trder convention,

Now, from Egs. (47) and (77),

G = £-4( BV G (fhE x)/k?

‘here the first square root term is of order unity. This varameter is plotted
gainst 1/2x (which denotes the ratio of blowing to mean axial velocity) in Fig.
. A nearly linear relationship is obtained, using the foregoing coefficient
alues. In comparison, the data obtained by Olson and Eckert [6] is considered.
ief. 6 includes a plot of the ratio of (axial pressure gradient)/(mean dynamic
xial head) vs v, */u,* = 1/2x. This obtains an almost linear correlation, as
rould be exoecté% from a parabolic pressure drop. The slight curvature however,
jarticularly apparent at small values of 1/2x < 0.01, can be followed only with
;he present formulation, not with any parabolic pressure profile. Thus, the
‘irst order pressure distribution, obtained from he viscous wall layer analysis,
jarees well with the measured data of Brown, et al [8), while the associated
vall friction coefficient follows the same trend as that measured by Olson and

ickert [6]).

(81)

CONCLUSIONS

A derivation of the viscous wall layer regime has been presented,
sertaining to injected flow in an axial porous tube, in simulation of interior

50l1id propellant rocket flows.

Solutions for the radial coordinate (or y-dependence) of all the devendent
sariahles up to te second order have been generated, in polynominal form. The
{x,t)~dependence is defined in terms of a relatively simple partial differential

system.

Particular results of the analysis for the special case of steady state,
are: (1) the first order pressure perturbation was solved for and its axial
3istribution is given explicitly; this term is entirely due to the laminar
dissipative wall-layer processes, and (2) the blown wall friction coefficient
was likewise defined. Both results correlate well the available experimental
Jata. Finally, (3) the zeroth order axial velocity distribution within the
layer is linear radially; thus, to lowest order, viscous dissipation is
negligible in the axial momentum halance. This indicates why inviscid,
rotational solutions (such as those of Culick [1] and others, chosen so as to
patisfy the no-slip condition at the wall) are so successful in representing
these family of flows - up to first order.

NOMENCLATURE
Reo A = nozzle throat area and port exit area, respectively
[ = adiahatic velocity of sound
Ce = wall friction coefficient, Eq. (80)
Cy» Cp e isochoric and isobaric specific heats (J/kg=K)
F = radial mass flux (dimensionless)
G = axial mass flux (dimensionless)
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A = thermal enthalpy, dimensionless _

Km = ratio of inverse Reynolds number and Mach number sguared, Eg. (21) i

L = chamber length -:5

] = Mach number ﬁ?li

p = pressure ?

) = Prandtl number, Eg. (7) j

R,* = channel radius ‘i

Reo = injected Reynolds number, Eg. (7) j

r = radial coordinate 1

51,2'3 = :zzgrce'-terms in the ecuations of motion for coreflow, Egs. (12)-

Sro = Strouhal number, injected, (Eg. 24)

t = time (dimensionless) -

Uy = parameter defining (x,t) - variation of wall layer axial velocity

component

u, u = axial velocity, and mean axial coreflow velocity respectively

v = radial velocity component

X = axial distance (dimensionless)

Yy = EadiTié)magnified wall layer coordinate, pverpendicular to surface,

q.

Greek Svmbols:

1/ = Cp/Cv specific heat ratio -

A = difference, increment, Eq. (79) )
2 = length scales, Egs. (22)-(24) i
=3 = small perturbation quantity, Eq. (19) .
)\ = thermal conductivity of gas (air)}, J/K-m-s

}L' = yviscosity coefficient, kg/m-s ]
f = density

Subscripts, Superscripts: f-‘.a
(o = denotes zeroth order (perturbation) §
(N = denotes first order perturbation 5
()* = denotes dimensional guantitv ) N
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WITHIN THE VISCOUS SUBLAYER (STOKES LAYER) WHERE PRIMARY COMBUSTION OCCURS:

FREQUENCY-DEPENDENT SURFACE
HMEAT TRANSFER (FIRST ORDER),
WiTw PHASE RELATIVE TO
ATTENDANT PERTURBAT]ION.

DC-COMPONENT: ACOUSTIC STREAMING,
WHEN U, V NOT OUY OF PHASE, NET
X-MOMENTUM TRANSFEP DCCURS.
(SECOND ORDER),
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Figure 1, Schematic of the inner motor nonsteady combustion
process simulated by the injected cold flow analysis.
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Figure 2. Schematic of the injected wall layer region . f
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